
11 Aug 2023

SLOW5 Specification (version 1.0.0)

Hasindu Gamaarachchi, Hiruna Samarakoon, Sasha P. Jenner, James M. Ferguson, Timothy G. Amos, Jillian M.
Hammond, Hassaan Saadat, Martin A. Smith, Sri Parameswaran, Ira W. Deveson

Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia.

This is a live document of supplementary note 3 published under “Gamaarachchi, H., Samarakoon, H., Jenner,

S.P., Ferguson, J.M., Amos, T.G., Hammond, J.M., Saadat, H., Smith, M.A., Parameswaran, S. and Deveson, I.W.,

2022. Fast nanopore sequencing data analysis with SLOW5. Nature biotechnology, pp.1-4.”

https://doi.org/10.1038/s41587-021-01147-4

If anything in this document is unclear/vague or if you think something is missing/wrong/

inconsistent, do not assume, instead directly open a GitHub issue.

PREAMBLE

SLOW5 is a new file format encoding signal data from nanopore sequencing. SLOW5 was developed

to overcome inherent limitations in the existing FAST5 (HDF5) data format that prevent efficient

parallel analysis and cause many headaches for developers.

SLOW5 refers to two file formats, namely SLOW5 ASCII and SLOW5 binary (called BLOW5). The

extension for SLOW5 ASCII is .slow5 and for BLOW5 it is .blow5. For efficient data access and to

minimise disk space, users are expected to use BLOW5. SLOW5 ASCII is the human readable format

and should only be used to view the content.

Random access to either SLOW5 ASCII or BLOW5 is supported using a binary index file. This is a

separate file in the same directory as the SLOW5 ASCII or BLOW5 file. For SLOW5 ASCII, the index

takes the extension .slow5.idx and for BLOW5 the index takes .blow5.idx.

A SLOW5 file contains a header followed by the sequencing data. In datasets from Oxford Nanopore

Technologies (ONT), the run_id is a unique identifier that distinguishes a sequencing run. We will

refer to a sequencing run and its data as a read group. A SLOW5 file can store multiple read groups in

a single file, allowing data from multiple sequencing runs to be stored in a single SLOW5 file, whilst

retaining their individual metadata.

Full specifications for current and previous versions of SLOW5 are available at:

https://hasindu2008.github.io/slow5specs/

SLOW5 ASCII

A SLOW5 ASCII file is a plain text file that uses the American Standard Code for Information

Interchange (ASCII) encoding (locale: C/POSIX, code set: US-ASCII). The file extension is .slow5.

An example structure of a SLOW5 ASCII file with a single read group is provided in Table 1. An

example structure of a SLOW5 ASCII with multiple read groups - i.e., multiple sequencing runs - is

provided in Table 2. The column/row borders and cell colours are added to increase the readability.

1

https://doi.org/10.1038/s41587-021-01147-4
https://hasindu2008.github.io/slow5specs/


The actual format uses tabs (‘\t’) and newlines (‘\n’) as delimiters (IMPORTANT: ‘\r’ or “\r\n” are not

allowed). The first set of lines is the SLOW5 header. The header lines start with ‘#’ or ‘@’. The

remainder of the file encodes nanopore signal data in one read per line.

Table 1: Example of a SLOW5 ASCII file with a single read group.

Blue = global header. Yellow = data header. White = data records.

#slow5_version 1.0.0

#num_read_groups 1

@asic_id 0004A30B00232BEC

@exp_start_time 2020-01-01T00:00:00Z

@flow_cell_id FAH00000

@run_id 855cdb

… …

#char* uint32_t double double double double uint64_t int16_t* ...

#read_id read_group digitisation offset range sampling_rate len_raw_signal raw_signal ...

read0 0 8192 6 1467.6 4000 123456 498,492,... ...

read1 0 8192 5 1467.6 4000 2000 491,491,... ...

… … … … … … … … ...

readN 0 8192 3 1467.6 4000 3000 400,400,... ...

Table 2. Example of a SLOW5 ASCII file with multiple read groups.

Blue = global header. Yellow = data header. White = data records.

#slow5_version 1.0.0

#num_read_groups 3

@asic_id 0004A30B00232BEC 1004A30B00232BEC 2004A30B00232BEC

@exp_start_time 2020-01-01T00:00:00Z 2020-01-01T00:00:00Z 2020-01-01T00:00:00Z

@flow_cell_id FAH00000 FAH00001 FAH00002

@run_id 855cdb 855cd1 855cdc

… … … …

#char* uint32_t double double double double uint64_t int16_t* ...

#read_id read_group digitisation offset range sampling_rate len_raw_signal raw_signal ...

read-0 1 8192 6 1467.6 4000 4000 498,492,... ...

read-1 0 8192 5 1467.6 4000 2000 491,491,... ...

… … … … … … … … ...

read-N 2 8192 3 1467.6 4000 3000 400,400,... ...

2



SLOW5 Header
The SLOW5 header stores metadata regarding the experiment. Header lines start with either ‘#’ or

‘@’. The header contains two parts: the global header (blue fields in tables above) and the data

header (yellow fields in tables above).

Global header

The lines starting with ‘#’ form the global header (blue fields above).

The header lines are as follows:

1. The first line of a SLOW5 ASCII file is a key-value pair that specifies the SLOW5 version. The

key is separated from the value using a tab ‘\t’.

2. The second line specifies the number of read groups in the file. Observe that in the single

read group file example (Table 1), the value for num_read_groups is set to 1. In the second

example with three read groups (Table 2) the value is set to 3.

3. The last line of the header is always the field names for the subsequent per-read records.

4. The second last line of the header specifies the data types of each field for the subsequent

per-read records (i.e., for the fields named in the last line of the header). Further information

about the fields is provided in the SLOW5 Data section below.

Data header

The header lines that start with ‘@’ form the data header (yellow fields above). These header lines

contain ONT data attributes that are shared across multiple reads in a sequencing run (read group).

For instance, the run_id and the flow_cell_id are common to all the reads in the read group and are

therefore stored in the data header (Table 1). These data header lines should always lie after the first

two mandatory global header lines and before the last two mandatory global header lines, as

illustrated in Tables 1 & 2.

For a SLOW5 file containing a single run_id, data header lines are key-value pairs delimited by a tab

‘\t’ (Table 1). When there are multiple run_ids present, the key is followed by a series of values

delimited by tabs ‘\t’ (Table 2). The first value is for the read group 0, the second value is for the read

group 1, the third value is for the read group 2 and so on.

If any attribute value is missing from a given read group a “.” is used.

As indicated by the ‘…’ in Table 1 & 2 after the run_id row, many other data header lines may exist,

encoding many attributes associated with a given nanopore sequencing experiment.

The dataset headers are sorted in ascending order based on the native byte values (US-ASCII in

C/POSIX locale) of the key. Using sorting, rather than a fixed order, ensures the SLOW5 file format can

easily accommodate the addition or removal of attributes in the future. A list of possible data header

attributes (not an exhaustive list) is provided in Table 3 below (note: we did not develop FAST5 files;

many of the definitions are based on information in [1]).

3



Table 3. Common SLOW5 header attributes.

Data header attribute key Description Example value

asic_id Application Specific Integrated Circuit identifier (ASIC) of the flow cell
(unique number of the chip), for tracking purposes.

213553007

asic_id_eeprom The identifier of the ASIC’s electrically erasable programmable
read-only memory (EEPROM) of the flow cell.

5309577

asic_temp The temperature in degrees celsius of the ASIC chip at the start of
the sequencing run.

28.867193

asic_version The version of ASIC being used. IA02D

auto_update Indicates whether auto-update in Minknow is enabled or not. 0

auto_update_source The link to the Minknow update source. https://mirror.oxfordnanop
ortal.com/software/MinKN
OW/

barcoding_enabled Indicates whether barcode demultiplexing is enabled during live
basecalling.

0

bream_is_standard Bream is one of the software for controlling sequencing. 0

configuration_version The version of the configuration system in MinKNOW including the
experiment scripts.

4.0.13

device_id The serial ID of the MinION or device position for
GridION/PromethION. Device position on GridION/PromethION
refers to the ID of the bay (slot where the flow-cell is put) on the
device.

X2

device_type The device type (currently MinION, PromethION or GridION). gridion

distribution_status Stable vs dev/alpha/beta status. stable

distribution_version MinKNOW version. 20.06.9

exp_script_name The name of the experiment script run along with optional
parameters passed to it, based on what kits are selected in
MinKNOW for sequencing.

sequencing/sequencing_MI
N106_DNA:FLO-MIN106:SQ
K-LSK109

exp_script_purpose The ‘purpose’ of the experiment script. For example, whether the
experiment was a real sequencing run or a simulation playback.

sequencing_run

exp_start_time Start time of sequencing run. 2020-09-08T01:23:21Z

experiment_duration_set Indicates the duration of the experiment selected when starting the
sequencing run (assumed to be in minutes)

4320

experiment_type Indicates the type of the experiment, for instance, genomic_dna or
rna.

genomic_dna

flow_cell_id Unique ID for the flow-cell, used by ONT to track flow-cell metrics
and warranty.

FAN43349

flow_cell_product_code The type of flowcell (product code of the flowcell and pore type).
These will be different based on R9.4.1, R10.3, R9.5, PromethION,
etc.

FLO-MIN106

guppy_version Guppy version being used by MinKNOW. 4.0.11+f1071ce

heatsink_temp The temperature (in degrees celsius) of the heat sink on the ASIC at
the start of the sequencing run.

33.996094

4



hostname The hostname of the computer/machine doing the sequencing run. GXB02243

installation_type This is the MinKNOW install type. nc

local_basecalling Indicates if live base calling is enabled or not. 1

operating_system The operating system and the version of the computer performing
the sequencing run.

ubuntu 16.04

package Relates to Bream
[https://github.com/nanoporetech/minknow_lims_interface].

bream4

protocol_group_id This is the unique ID given to the group of acquisition periods during
a run, denoted by run_id. Multiple acquisition periods can occur
during a single “run”, depending on the protocol.

GLFN180082

protocol_run_id This is a unique identifier for the experiment GROUP (just in case the
name given by the user is not unique). This is the same for each run
of the same experimental group.

f2c69573-5fef-43b8-8d81-9
cb20634aa7c

protocol_start_time The start time of the data acquisition periods for a
protocol_group_id. Appeared in FAST5 2.3.

2021-08-26T15:34:52.1860
21+10:00

protocols_version Allows MinKNOW to track various protocols for barcoding, kits, etc. 6.0.7

run_id The unique run ID which will be different for each run (data
acquisition period), even in the same experiment group. Whenever
MINKNOW starts an experiment script for data acquisition, a new
run_id is generated.

07770780274b0e3703f00d
969291b1a37a5a6be1

sample_frequency Typically the same as the sampling_frequency in the channel_id
group.

4000

sample_id Sample ID is the name given by the user for the sample. NA12878

sequencing_kit The sequencing kit used, for instance, sqk-lsk109 or sqk-rna002.
[https://store.nanoporetech.com/sample-prep.html]

sqk-lsk109

usb_config Various information about the connection between the flow-cell and
the computer.

GridX5_fx3_1.1.3_ONT#Min
ION_fpga_1.1.1#bulk#Auto

version MinKNOW version. 4.0.3

NOTE: Many of the attributes in Table 3 are not used in a typical signal analysis experiment and many

are also inconsistent between various FAST5 versions. Although they are unlikely to be used, these

attributes are retained by default when converting from FAST5 to SLOW5 format (i.e. conversion is

lossless by default). Note that the above list is not an exhaustive list. For instance, FAST5 files

generated on the PromethION have additional attributes such as hublett_board_id and

satellite_firmware_version. Also some new attributes (listed under Appendix 1 of this document)

have been introduced (and some renaming of attribute names) in ONT’s latest POD5 format, which

are retained when converting from POD5 to SLOW5 format.

5



SLOW5 Data

After the SLOW5 header, the actual data is encoded (white fields in Tables 1 & 2, above). Each line

contains information about a single read and we refer to this as a record. Each record is made up of

several fields that are tab delimited.

As mentioned earlier, the last header line specifies the name of each field. There are two types of

fields:

● Primary fields are mandatory and arranged in a strict order. There are 8 primary fields,

which are exemplified in Table 1 & 2 (from the read_id field to raw_signal field)

● Auxiliary fields are optional and arranged in no strict order. There can be 0 or more auxiliary

fields and these are denoted by the ‘…’ after the raw_signal field in Table 1 & 2.

The second last header line specifies the data type of each primary & auxiliary field. For the primary

fields the data types are always the same, whereas the auxiliary field types depend on the fields

themselves. The supported data types in SLOW5 are:

● 8-bit, 16-bit, 32-bit and 64-bit signed integers (int8_t, int16_t, int32_t, int64_t) and

corresponding 1D arrays (int8_t*, int16_t*, int32_t*, int64_t*)

● 8-bit, 16-bit, 32-bit and 64-bit unsigned integers (uint8_t, uint16_t, uint32_t, uint64_t) and

corresponding 1D arrays (uint8_t*, uint16_t*, uint32_t*, uint64_t*)

● IEEE 754 32-bit and 64-bit precision floating point (float, double) and corresponding 1D

arrays (float*, double*)

● ASCII characters (char) and ASCII strings (char*). Note: Tabs (‘\t’ and newline characters ‘\n’

are not allowed in either)

● 8-bit enumeration type (enum) that consists of integral constants. Enumerations must be

declared with the enum keyword followed by the comma-separated integral constants inside

curly braces. eg: enum{const1,const2,const3}. Note that the integral-constant names are

restricted to alphanumeric characters plus underscores, similar to that in the C programming

language. The values for the integral-constant are assigned based on the order they are

defined, for instance, const1 = 0, const2 = 1 and const3 = 2 in the above example. Note that

enum in SLOW5 is restricted to 8-bit.

6



Primary fields

The 8 primary data fields in SLOW5 format are summarised in Table 4 below. These fields are

mandatory and must be arranged in the order that they appear in Table 4.

Table 4. Primary data fields in SLOW5 format.

Field name Data type Description Example value

read_id char* A unique identifier for the read. This is a Universally unique identifier
(UUID) version 4, and should be unique for any read from any device.

00592138-f120-4ab5-991
6-c5567adb8e29

read_group uint32_t Read group identifier. More information in the subsequent text. 0

digitisation double The digitisation is the number of quantisation levels in the Analog to
Digital Converter (ADC). That is, if the ADC is 12 bit, digitisation is 4096
(212).

8192.0

offset double The ADC offset error. This value is added when converting the signal to
pico ampere.

10.0

range double The full scale measurement range in pico amperes. 1441.389892578125

sampling_rate double Sampling frequency of the ADC, i.e., the number of data points collected
per second.

4000

len_raw_signal uint64_t The number of samples in the raw signal (length of the raw_signal vector
below).

59676

raw_signal int16_t* The raw signal which are the direct acquisition values from the ADC and
are comma separated.

1039,588,588,593,586….

Of the 8 primary fields, read_group is the only field that does not appear in ONT’s FAST5 format but

has been introduced in SLOW5. read_group identifiers allow reads from multiple sequencing runs to

be stored in the same file. read_group is essentially an index (0-based index) that specifies where the

data header values for a given read are to be found in the data header. For instance, in Table 2,

read0 has the read_group 1 which means that the second value of the three values for each header

attribute contains information for that particular sequencing run (e.g. out of the three values for the

flow_cell_id key, second one is FAH00001).

In the SLOW5 header, the num_read_groups specify how many read groups are present. For

instance, in Table 2, there are 3 samples in the file and thus num_read_groups is equal to 3. Note

that the following should always be true: 0 <= read_group < num_read_groups. read_group is

always 0 for a single sample file (as it is in Table 1).

Datasets are separated into multiple read groups based on the run_id (which is a unique string for a

sequencing run specified in the data header). The indexing order of the read groups (read_group) is

determined by the order the FAST5 files are parsed during FAST5 to SLOW5 conversion. This

read_group is an internal index used for enumerating. This index allows more efficient enumeration

(less computation and saves disk space) than performing string comparisons if run_id string was

stored in the data record for every read instead.

Primary fields contain all the information required for a typical nanopore signal-level analysis. The

raw signal can be easily converted to pico-ampere using the following equation:

signal_in_pico_ampere = (raw_signal + offset) * range / digitisation

7



Auxiliary fields

SLOW5 files may contain 0 or more auxiliary data fields, some common examples of which are

provided in Table 5 below. These fields are optional and not bound by any strict order.

Table 5. Common auxiliary data fields in SLOW5 format.

Field name Data type Description Example value

channel_number char* The channel number. A flow cell has multiple channels allowing multiple
DNA/RNA strands to be sequenced in parallel. For instance, a MinION flow
cell has 512 channels and thus can sequence 512 strands in parallel.

504

median_before double The estimated median current level immediately preceding the read. In

most cases this can be used as an estimate of the open pore level. The

open-pore state is when there is no strand inside the pore.

238.78225708007812

read_number int32_t A unique number within each channel counted upwards from zero. Note

that not all reads generated are “strand” reads, but only strand reads are

written to the final fast5 file, so some read numbers may be absent.

17981

start_mux uint8_t The MUX setting for the channel when the read began. Each channel

contains one or more wells. For instance, a MinION flow cell has 4 wells

per channel. The wells within a channel are connected to a multiplexer

(MUX), a switch that controls which of the four wells in the channel is

controlled and read out for sequencing.

4

start_time uint64_t The start time of the read. The unit for start_time is ‘number of signal

samples’, so start_time has to be divided by sampling rate (sampling_rate)

to get the start time in seconds (i.e. the time since the run was started)

335845487

Auxiliary fields contain all per-read information from ONT FAST5 files that we do not consider

primary data fields (i.e., attributes that are not commonly used in signal-level analysis). If a value for

a particular auxiliary field is unavailable for a given read it is represented with a “.”.

It is important to note that auxiliary fields can be in any order, meaning the user should not rely on

their order and instead should enumerate based on the field names and data types specified in the

header. Any future per-read attributes added to FAST5 by ONT will be included as auxiliary fields in

SLOW5. If ONT drops any attribute from FAST5, it will also be dropped in SLOW5.

The auxiliary fields are separated from each other and from the primary fields by using a tab ‘\t’ as a

delimiter. The elements in a field of 1D array data type (except char* strings) are delimited by

commas. Strings are stored as a series of characters, as usual, and the null terminating character is

not stored.

Another recent auxiliary field is end_reason which is of enum data type. This field likely relates to

selective sequencing, i.e., it states why a particular read ended. Possible enum labels are

unknown,partial,mux_change,unblock_mux_change,signal_positive,signal_negative. However, this is

not an exhaustive list and enum labels will depend on what was present in input FAST5 files. Also,

note that the order of the enum labels should not be assumed to be consistent, as this order would

change depending on the order in FAST5 files. Also, there have been some changes to these labels in

ONT’s POD5 format, that are highlighted in Appendix 1.

Also some new auxiliary fields (listed under Appendix 1 of this document) have been introduced in

ONT’s latest POD5 format, which are retained when converting from POD5 to SLOW5 format.

8



9



BLOW5

A SLOW5 binary file or a BLOW5 file is the binary counterpart to a SLOW5 ASCII file. The file

extension is .blow5. In BLOW5 format all multi-byte numbers are stored in little-endian, regardless of

the machine's endianness.

A BLOW5 file can be either uncompressed or compressed. At present, three separate

compression/decompression schemes have been implemented in slow5lib, namely: (i) Z-Library (zlib;

also referred to as gzip or DEFLATE), which is an established library that is available by default on

almost all systems; (ii) Zstandard (zstd), which is a recent, open source compression algorithm

developed by Facebook; and (iii) StreamVByte (svb), which is a recent integer compression technique

that uses Google's Group Varint approach). Zlib and zstd are used for compressing SLOW5 records (a

record is the collection of all primary and auxiliary fields of a particular read), whereas svb is for

compressing the raw signal field alone. Our implementation supports first compressing the raw signal

using svb and then compressing the SLOW5 record (now with the raw signal svb compressed) using

zlib or zstd, at the user’s discretion. Each read is compressed/decompressed independently from one

another by using an individual compression stream for each read. Thus, multiple reads can be

accessed and decompressed in parallel using multiple threads.

The use of zstd on top of svb compression is equivalent to ONT’s custom ‘vbz’ scheme

(https://github.com/nanoporetech/vbz_compression), which uses these two open source algorithms

for FAST5 compression. We also note that slow5lib has been designed such that any other suitable

compression scheme can be easily integrated if necessary, making it future proof.

BLOW5 Header

The fields of the BLOW5 header are displayed in Table 6 below. Note that despite being shown in a

table for clarity, the fields in a BLOW5 file are stored serially in the exact order as they are in Table 6,

without any tabs or newlines to separate the fields. The byte offset in the file (first column) and the

size of the field in bytes (second column) are used to locate a particular field within a BLOW5 file.

The first field, the magic number, is a 6 byte string “BLOW5\1” used as a signature to identify the file

format. The next three fields are for storing the BLOW5 file version and the value here is the same as

in the SLOW5 ASCII counterpart. The 5th field indicates if the BLOW5 records are compressed or not

and the compression method used if compressed. The 6th field is the number of read groups in the

file, which have the same value and meaning as in the SLOW5 ASCII counterpart (described above).

From SLOW5 v0.2.0 onwards, 7th field indicates if a special compression has been applied for the raw

signal and the method used for that. Finally, 49 bytes are reserved for future fields. These reserved

bytes that are unused in this version must be initialised to zeros.

Offset 64 contains an integer field that indicates the size of the upcoming variable-sized field, the

SLOW5 ASCII header. The next field is the SLOW5 ASCII header, which is the same as in a SLOW5 ASCII

file, with the following exceptions:

1. The first line of the SLOW5 header specifying the #slow5_version is removed as this is already

stored at the beginning of the BLOW5 header;

2. The second line of the SLOW5 header specifying the #num_read_groups is also removed as this

is also stored at the beginning of the BLOW5 header;

10

https://github.com/nanoporetech/vbz_compression


Apart from these exceptions, the complete SLOW5 ASCII header is stored, including tabs, newlines

and the starting characters “#” and “@”. Note that all header data values will be converted to ASCII

strings, despite the data type for the corresponding fields in FAST5 files.

Table 6. Structure of a BLOW5 file header.

Offset size (bytes) Description data type Value

00 6 Magic number char[6] “BLOW5\1”

06 1 Major version number uint8_t 0 to 255

07 1 Minor version number uint8_t 0 to 255

08 1 Patch version number uint8_t 0 to 255

09 1 Record compression method uint8_t 0 to 255
(0 for none, 1 for
zlib, 2 for zstd)1

10 4 Number of read groups uint32_t 0 to 232-1

14 1 Signal compression method (from v0.2.0 onwards) uint8_t 0 to 255
(0 for none, 1 for
svb-zd)2

14 50 Reserved for future - -

64 4 Size of the SLOW5 header (without null character) uint32_t 0 to 232-1

68 The plain text header of the SLOW5 (null character not
stored; #slow5_version and #num_read_groups are removed
as they are already in the binary header)

char[]

BLOW5 Data

The SLOW5 data records are serially stored in binary format with each record individually

compressed using the record compression method specified in the header (data is not compressed if

no compression is specified in the header, that is, if the record compression method is set to 0). From

SLOW5 v.0.2.0 onwards, a special compression can be optionally applied to the raw signal field. If

such special compression is applied and if so the compression method used is specified in the header

(signal compression method). The record compression is still applied to the record (on top of the

compressed signal now) if the record compression method in the header is set.

Note that each record is individually compressed to allow efficient parallel access to different records

simultaneously.

IMPORTANT: Each BLOW5 record is preceded by the size of the upcoming BLOW5 record in bytes

(the size of the compressed record if compressed), which is an 8-byte uint64_t type unsigned integer.

Storing this size is useful for faster and easier indexing of a BLOW5. We will refer to this special field

as “len_blow5_rec” from here onwards.

2 none means uncompressed binary. svb-zd stands for StreamVByte [2] with zig-zag delta encoding.
Note that more compressions can be added in future without changing the SLOW5 file version.

1 none means uncompressed binary. zlib stands for the z-library which is also referred to as gzip or
DEFLATE. zstd stands for the z-standard. Note that more compressions can be added in future
without changing the SLOW5 file version.

11



The fields in an uncompressed BLOW5 record are displayed in Table 7 below.

Table 7. Structure of a BLOW5 record.

Size (bytes) Description Data type

2 string length of the read ID (without null character) uint16_t

<variable> - based on preceding value read ID (null character not stored) char*

4 read group uint32_t

8 digitisation double

8 offset double

8 range double

8 sampling_rate double

8 len_raw_signal uint64_t

<variable> - based on preceding value raw_signal int16_t*

<auxiliary fields>

The first field is a uint16_t integer that specifies the size of the upcoming read_id string. Then comes

the eight primary data fields explained under the SLOW5 ASCII section (see above), but now stored in

binary. Note that the raw_signal field, which was a comma separated list in SLOW5 ASCII, is now a

series of int16_t integers (each 2 bytes in size) stored serially without commas. The size of the

raw_signal field in bytes in Table 7 is determined by the product of the len_raw_signal and the size

of int16_t, which is 2.

The raw_signal field in a BLOW5 record is followed by the auxiliary fields, as described above. The

fields are stored in the same order and datatypes as specified in the header.

Primitive data types (int8_t, uint8_t, int16_t, uint16_t, int32_t, uint32_t, int64_t, uint64_t, float,

double, char, enum) are stored such that: int8_t, uint8_t, char and enum taking 1 byte; int16_t and

uint16_t taking 2 bytes, int32_t, uint32_t and float taking 4 bytes; and, int64_t, uint64_t and double

taking 8 bytes as shown in Table 8 below. Any missing data field (represented by a ‘.’ in SLOW5 ASCII)

is represented in BLOW5 by using the value stated in column 3 in Table 8. This special value that

represents a missing value cannot be used to represent the real value.

Auxiliary fields of 1D array data types are stored with the length of the 1D array (the number of

elements in the 1D array, not the size in bytes) in the form of an 8 byte unsigned integer (uint64_t)

preceding the actual data in the array. The elements in 1D arrays are stored sequentially without any

delimiting commas. The size of the array field in bytes is determined by the product of the length of

the 1D array and the size of the corresponding primitive data type. A missing array field including for

strings (“.” in SLOW5 ASCII) is represented by storing 0 as the length of the array. Note that for strings

(char * arrays), the NULL character is not necessary to be stored. In case it is stored, the preceding

size of the array should include the NULL character.

12



Table 8. Primitive data types used in BLOW5 format.

Data type size (bytes) Missing value representation

int8_t 1 INT8_MAX = 2^7-1

int16_t 2 INT16_MAX = 2^15-1

int32_t 4 INT32_MAX = 2^31-1

int64_t 8 INT64_MAX = 2^63-1

uint8_t 1 UINT8_MAX = 2^8-1

uint16_t 2 UINT16_MAX = 2^16-1

uint32_t 4 UINT32_MAX = 2^32-1

uint64_t 8 UINT64_MAX = 2^64-1

float 4 generic NaN value returned by nanf(“”)

double 8 generic NaN value returned by nan(“”)

char 1 ‘\0’

enum 1 UINT8_MAX = 2^8-1

BLOW5 Footer

A BLOW file should always end with the end of file (EOF) marker “5WOLB”. This is useful for detecting

file truncation.

SLOW5 INDEX

A SLOW5 index is a binary file that contains an index to facilitate random access to a SLOW5 ASCII or

BLOW5 file based on the read_id. The extension of an index for a SLOW5 ASCII file is .slow5.idx and

for a BLOW5 file is .blow5.idx. A SLOW5 index always takes the same binary form as described below,

irrespective of whether it is for a SLOW5 ASCII or BLOW5 file.

SLOW5 Index Header

Table 9. SLOW5 index header structure.

Offset size (bytes) Description data type Value

00 9 Magic number char[9] “SLOW5IDX\1”

09 1 Major version number uint8_t 0-255

10 1 Minor version number uint8_t 0-255

11 1 Patch version number uint8_t 0-255

12 52 Reserved for future - -

Note: The SLOW5 index version is the same as that of the SLOW5 version in the corresponding

SLOW5 file.

13



SLOW5 Index Data

The SLOW5 index data records start from offset 64 of the file. The index should have a single record

for every record in the corresponding SLOW5/BLOW5 file. An individual SLOW5 index record takes

the following form:

Table 10. SLOW5 index data structure.

Size (bytes) Description Data type

2 String length of the read ID (without null character) uint16_t

<variable> - based on preceding value Read ID (null character not stored) char*

8 For ASCII SLOW5: byte offset in the SLOW5 ASCII file that corresponds to

the beginning of the data record.

For BLOW5: byte offset in the BLOW5 file that corresponds to the

beginning of the len_blow5_rec that precedes the data record.

uint64_t

8 For ASCII SLOW5: size of the SLOW5 ASCII data record in bytes.

For BLOW5: size of the BLOW5 data record in bytes (the size of the

compressed record if compressed) + the size of the len_blow5_rec

preceding the record (which is 8 as the datatype of len_blow5_rec is

uint64_t).

uint64_t

SLOW5 Index Footer

A SLOW5 index file should always end with the end of file marker “XDI5WOLS”. This is useful in

detecting file truncation.

14



RATIONALE BEHIND SLOW5 DESIGN DECISIONS

In this section we provide the rationale behind certain design decisions and why these were

preferred over other potential solutions. Please note that some of the following discussions are

pretty technical and not for the faint-hearted.

● Why does SLOW5 have two types of fields, primary and auxiliary?

○ Primary fields are the essential elements of signal-based analysis. These essential

elements are provided as primary fields for easy and quick accessibility.

○ Auxiliary fields are very application-specific and not generally used in existing

signal-based analyses. Keeping these fields separate prevents convoluting the

primary fields. Also, auxiliary fields can be in any order and are optional. Therefore,

the SLOW5 format will not break when ONT adds or removes a field, and users can

optionally choose to discard the auxiliary fields during FAST5 to SLOW5 conversion,

in order to reduce file size and complexity.

● Why is SLOW5 one big file opposed to a number of small files?

○ Modern file systems support bigger files. With disk sizes continually growing, this will

be increasingly true in the future.

○ Random accesses would require repeated expensive file open and close operations if

multiple files are used (the default number of maximally open files in Linux is

typically 1024).

○ In the case of a user requiring to perform process-level parallelism on a per-file basis,

they could use slow5tools split to quickly split the files.

○ When archiving, users tend to tar the files into a single ball anyway if there were

multiple files. So why not just create a single file that can be directly archived?

○ Most bioinformatics users are familiar with working on a single large file for a given

sample in FASTQ, BAM or VCF format, so we thought it would be good to follow this

approach.

● Why does SLOW5 support multiple sequencing runs in the same file?

○ In nanopore sequencing experiments, it is quite common to run more than one flow

cell on a given sample, or create a new run id when a flow cell is washed and

reloaded during a run. Allowing data from multiple run_ids to be stored in a single

SLOW5 file means developers do not have to deal with manually accepting multiple

files when analysing data from more than one run. It is generally more convenient to

have all the data in a single file.

● Why are empty fields in SLOW5 ASCII represented by “.”?

○ SLOW5 ASCII is only for human readability and having a “.” is easier to read than

empty fields. This is also easier to parse when using tools like awk, sed and cut.

Popular formats like SAM, BED and VCF use “.” for empty fields, so we chose to stick

to this convention.

○ If a single “.” is to become a valid field value (unlikely) in FAST5 which is not the case

at the moment, we would introduce a workaround such as using “\.” or “..” in the

future.

15



● Why is there a version number for the slow5 index?

○ To make it future proof.

○ In the future, we can provide alternate btree based indexing for memory efficiency if

required.

● Why does BLOW5 use little endian storage?

○ All modern systems seem to use little endian. We are not aware of any big endian

systems still in use.

● Why is a tab used as the delimiter in SLOW5 ASCII?

○ Tab separators are easy to parse with awk, sed, cut and other command line tools.

This also mimics the convention used in SAM, VCF, BED and other genomics formats.

● Why are # and @ used in the SLOW5 header?

○ To distinguish the SLOW5 format related attributes (SLOW5 global header) from

nanopore related attributes (SLOW5 data header) we use the two symbols # and @.

Both of those characters are not supposed to be used in read identifiers and

therefore there is no confusion with the data records.

○ We considered ‘##’ for SLOW5 global header and a ‘#’ for the SLOW5 data header

but we decided against this because if ONT introduces an attribute name that starts

with a ‘#’, this would cause a lot of problems for SLOW5.

● Why is native byte order sort used for the attribute names in the SLOW5 data header?

○ There are many different data attributes and these are quite hard to keep track of

because they differ between different FAST5 versions. Sorting these makes it easy for

a human to quickly locate the information they are after.

○ To prevent adhoc ordering which would make it difficult to parse.

● Why doesn’t SLOW5 support the analysis group in FAST5 files?

○ SLOW5 is meant for storing raw signal data. Storing analysis data (e.g., basecalled

FASTQ records) would convolute the file format. We believe those post processing

information should be a separate file, as is the case in other areas of bioinformatics

where, for example, raw reads (FASTQ), alignments (BAM) and variants (VCF) are

stored in separate files with specific formats.

● Why is a SLOW5 index always in binary and no ASCII version?

○ For fast loading and space saving.

○ The index is primarily read by a computer and not particularly useful to a human.

● Do any of the float/double fields in SLOW5 ASCII become lossy when they are converted to

ASCII strings?

○ Yes, some of them do (for example recurrent decimals). However, this is not an issue

when FAST5 is directly converted to BLOW5 as floats/doubles are directly stored in

binary. SLOW5 ASCII is meant for viewing the binary counterpart BLOW5 by humans

and not meant to be used for data archiving or processing. We recommend using the

16



default conversion setup in slow5tools f2s that converts FAST5 files to zlib

compressed BLOW5 files initially and the later use slow5tools view.

○ In ASCII we could have stored the float/double fields in hexadecimal to make

lossless, but then this is not as readable to humans as a natural representation like

x.y

● Do the values stored in the data header attributes become lossy as floats are also converted

to string?

○ Currently all the data header attributes in SLOW5 are stored as ASCII strings in FAST5

as well. So at the moment there is no loss.

● What happened to the duration attribute in FAST5?

○ The duration attribute has a bad history. A few years ago this used to be the length

of the signal in seconds and now this is used by ONT to represent the length of the

signal in terms of number of samples. To avoid ambiguity we store the length of the

signal in terms of the number of samples in the field len_raw_signal in SLOW5,

which is equivalent to the value in the duration attribute in FAST5.

○ If ONT decides to make the duration in seconds again, we can add this as an auxiliary

field for SLOW5 while keeping the len_raw_signal intact in SLOW5 as the length of

the signal is essential in signal analysis.

● What if the end of file markers “5WLOB” or “XDI5WOLS” occur in the middle of a file?

○ This is possible to happen if the data by any chance matches this pattern in binary.

However, this is not an issue as the end of the file marker in BLOW5 is used to detect

file truncation. That is, we check if the end of the file marker is present only if the

EOF has been reached.

○ The case that the data at the end of a truncation is translated to an end of marker is

extremely rare.

● Why are certain fields such as “digitisation” that seem to be identical across all reads in a

given sequencing run present in data records, opposed to being header data attributes?

○ These are essential values for converting the raw signal. So it is quite convenient to

have them adjacent to the raw signal. Also in case something happens to the header,

the records will still be usable.

○ In the future, this digitisation attribute may no longer be the same across reads (as

ONT stores this redundantly for each read unlike the header data attributes which

are symbolic links).

● Are options header lines that start with ‘#’ supported in SLOW5?

○ No. Optional lines would complicate parsing and can include complicated situations

where different users starting to use a header of their own and later causing

confusions. If the requirement comes, we will introduce this in a future version.

● What if the forbidden ‘\t’ and ‘\n’ in data header values and auxiliary fields ever should

become a valid character in FAST5?

17



○ At the moment they are forbidden to keep the file format simple. If this ever

happens, in future versions we will allow ‘\\t’ or something.

MISCELLANEOUS

SLOW5 versioning

While forward-compatibility cannot be ensured, backward compatibility will be maintained where

possible.

Versioning follows the major.minor.patch approach.

● The patch version is incremented for backwards compatible bug fixes.

● The minor version is incremented for backward compatible newer features and functions.

● The major version is incremented when potentially backward incompatible changes are

introduced.

There are two independent tracked versions:

1. slow5 file and slow5 index file version

2. slow5lib, pyslow5 and slow5tools versions

The slow5 file and slow5 index file version is independent from the slow5lib, pyslow5 and slow5tools

version and is used for checking compatibility.

slow5lib, pyslow5 and slow5tools versions are independently patched while maintaining

compatibility, and are version synced during any stable release.

CHANGELOG

Changes from v0.2.0

- nothing changed, just marking that slow5 format is feature complete and stable.

Changes from v0.1.0

- enum auxiliary data type .

- a field that indicates a signal compression method is added to the header.

- zstd compression added method added as one of the compression types to the record

compression fieled in the header and clarify that adding new signal/record compressions in

future does not changes the SLOW5 version.

- specify that all unused header fields (reserved for future) in BLOW5 must be initialised with

0.

18



APPENDIX 1

SLOW5 format was well thought out in the design, thus, the recent POD5 format introduced
by ONT can be converted to SLOW5, without any changes to the specification of the
SLOW5 format. Some new header attributes would be found (some are renamings or
duplicates to follow what is in POD5 files) when you convert POD5 to SLOW5 and their
explanations are given in Table 11. We knew that ONT loves adhoc renaming, adding and
removing of attributes so the specification of SLOW5 header data attributes were meant to
follow such changes.

Some new auxiliary data fields also would be found, which are explained in Table 12.

Table 11. Additional/renamed SLOW5 header attributes when converted from POD5.

Data header attribute key Description Example value

acquisition_id A unique identifier for the run (acquisition). This is the same
identifier that MinKNOW uses to identify an acquisition within a
protocol. This is a new name for ‘run_id’. As SLOW5 read groups are
dependent on ‘run_id’ and to retain backward compatibility, you will
also see a ‘run_id’ attribute which is identical to `acquisition_id’.

c6df34f043d40f6f45debe33
276597a09b8a14a6

acquisition_start_time This is the clock time for sample 0, and can be used together with
sample_rate and the start read field to calculate a clock time for
when a given read was acquired. The timezone should be set.
MinKNOW will set this to the local timezone on file creation. When
merging files that have different timezones, merging code will have
to pick a timezone (possibly defaulting to 'UTC'). This is a new name
for ‘exp_start_time’.

2023-06-02
14:12:59.057000+00:00

protocol_name The name of the protocol that was run. This is a new name for
‘exp_script_name’.

sequencing/sequencing_PR
O002_DNA:FLO-PRO002:SQ
K-LSK109

sequencer_position The sequencer position the data was collected on. For removable
positions, like MinION Mk1Bs, this is unique (e.g. 'MN12345'), while
for integrated positions it is not (e.g. 'X1' on a GridION). This is a new
name for ‘device_id’.

3A

sequencer_position_type The type of sequencing hardware the data was collected on. For
example: 'MinION Mk1B' or 'GridION' or 'PromethION'. This is a new
name for ‘device_type’.

promethion

system_name The name of the system the data was collected on. This might be a
sequencer serial (eg: 'GXB1234') or a host name (e.g. 'Lab PC'). This is
a new name for ‘host_product_serial_number’.

GXB03098

system_type The name of the system the data was collected on. This might be a
sequencer serial (eg: 'GXB1234') or a host name (e.g. 'Lab PC'). This is
a new name for ‘host_product_code’.

GridION X5 Mk1

adc_max The maximum ADC value that might be encountered. This is a
hardware constraint.

4095

adc_min The minimum ADC value that might be encountered. This is a
hardware constraint. adc_max - adc_min + 1 = digitisation.

-4096

19



Table 12. Additional auxiliary data fields in SLOW5 when converted from POD5.

Field name Data type Description Example value

tracked_scaling_shift float A shift value (either added to the signal or subtracted) potentially useful

for future basecallers for scaling the signal. This is estimated internally

by MinKNOW based on previous reads from the same channel/mux.

66.848465

tracked_scaling_scale float A scale value (either used to multiply or divide) potentially useful for

future basecallers for scaling the signal. This is estimated internally by

MinKNOW based on previous reads from the same channel/mux.

10.857443

predicted_scaling_shift float A shift for predicted read scaling values (possibly based on this read's

raw signal)

82.139679

predicted_scaling_scale float Scale for predicted read scaling values (possibly based on this read's raw

signal)

17.245634

num_reads_since_mux_
change

uint32_t Number of selected reads since the last MUX change on this reads

channel

59

time_since_mux_change float Time in seconds since the last MUX change on this reads channel 957.684387

num_minknow_events uint64_t Number of internal MinKNOW events that the read contains, which can

be potentially used to estimate the number of bases in the read. Seems

to highly correlate (pperson=0.989) with traditional events explained in

supplementary notes of [3].

2823

Note that the description above about these mysterious auxiliary fields from ONT is what we
understand and gathered, and the descriptions will be updated when/if we get more
information from ONT.

The `end_reason` attribute which is of enum data type (was already an aux field available
when converting recent FAST5) may have different enum labels when converted from
POD5. There is also a new state associated with each enum called end_reason_forced,
which describes if the end reason was a natural, or forced, event. For example, a mux
change is a forced event, as is rejecting a read with readUntil (mux_change,
unblock_mux_change and data_service_unblock_mux_change labels below are considered
forced in our understanding).

Table 12. end-reason labels when converted from POD5.

Enum name Enum value Description Forced

unknown 0 The end_reason is unknown False

partial 0 The end_reason is unknown. This value has been deprecated in POD5 but

is mapped to unknown for backward compatibility.

False

mux_change 1 A mux change occurred and ended the read True

unblock_mux_change 2 Unblocking pore event ended the read with a voltage reversal True

data_service_unblock_mu
x_change

3 readUntil/adaptive sampling ended the read with a voltage reversal True

signal_positive 4 The read was completed. The signal returned to an open pore state at

the end

False

signal_negative 5 The read became blocked. The signal did not return to open pore state False

20



REFERENCES

[1] Oxford Nanopore Technologies. Read .fast5 files from the instrument. technical_documents

https://community.nanoporetech.com/technical_documents/data-analysis/v/datd_5000_v1_revn_22aug2016/

read-fast5-files-from-th (2016).

[2] Lemire, Daniel, Nathan Kurz, and Christoph Rupp. "Stream VByte: Faster byte-oriented integer

compression." Information Processing Letters 130 (2018): 1-6.

[3] Gamaarachchi, H., Lam, C.W., Jayatilaka, G. et al. GPU accelerated adaptive banded event

alignment for rapid comparative nanopore signal analysis. BMC Bioinformatics 21, 343 (2020).

https://doi.org/10.1186/s12859-020-03697-x

21

http://paperpile.com/b/nmTcWO/UYBv
https://community.nanoporetech.com/technical_documents/data-analysis/v/datd_5000_v1_revn_22aug2016/read-fast5-files-from-th
https://community.nanoporetech.com/technical_documents/data-analysis/v/datd_5000_v1_revn_22aug2016/read-fast5-files-from-th
http://paperpile.com/b/nmTcWO/UYBv

