
Fast nanopore sequencing data analysis with SLOW5

Hasindu Gamaarachchi, Hiruna Samarakoon, Sasha P. Jenner, James M. Ferguson, Timothy G. Amos, Jillian M.
Hammond, Hassaan Saadat, Martin A. Smith, Sri Parameswaran, Ira W. Deveson

Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia.

https://doi.org/10.1038/s41587-021-01147-4

Supplementary Note 1. FAST5 format de-mystified

PREAMBLE

FAST5 files are Hierarchical Data Format 5 (HDF5) files with a specific schema defined by Oxford

Nanopore Technologies (ONT) for storing raw current-signal data generated from ONT devices. We

have compiled the following material to help researchers to understand FAST5 files, and consulted

ONT on various definitions within their format. This document should not be interpreted as a

definitive specification document from the developers of FAST5, although it is the most detailed

description of FAST5 format that we are aware of.

There are two FAST5 types: single-FAST5 and multi-FAST5 (first appearing around September 2018). A

multi-FAST5 file contains a batch of reads in a single file whereas a single-FAST5 file contains just a

single read per file. Single-FAST5 format is no longer used by ONT. In this document, FAST5 will

always refer to multi-FAST5 unless otherwise stated.

To read FAST5 files we use the HDF5 library and HDF5 tools [1].

BASICS

A FAST5 (HDF5) file is like a file system. Just as there are multiple levels of directories and files in a

file system, a FAST5 (HDF5) file contains groups and datasets, respectively. The term HDF5 objects is

an umbrella term for both groups and datasets. HDF5 objects can optionally contain attributes,

which are key-value pairs. HDF5 related terms are defined below with examples.

Groups

HDF5 groups (and links1) organise HDF5 objects. Every HDF5 file contains a root group that can

contain other groups or links to other HDF5 objects2. Working with groups and group members

(HDF5 objects) is similar in many ways to working with directories and files in UNIX. As with UNIX

2 Other objects can, in theory, be in the same FAST5 file or in a different FAST5 file.

1 Links are like directory/file paths in a file system. Links can be absolute, relative or even symbolic.

1

https://doi.org/10.1038/s41587-021-01147-4

directories and files, objects in an HDF5 file are often described by giving their full (or absolute) path

names.

● / signifies the root group.

● /foo signifies a member of the root group called foo.

● /foo/zoo signifies a member of the group foo, which in turn is a member of the root group.

Datasets

HDF5 datasets organise and contain the actual data values [2]. A dataset consists of metadata

(datatype, datasize, compression technique, etc) that describes the data, in addition to the data

itself. In any read within a FAST5 file, two datasets are found; the Raw group contains the raw

current-signal the Analyses group contains the FASTQ data (only if live base-calling was enabled) [1].

Attributes

Attributes can optionally be associated with HDF5 objects. The attributes have two parts: a name and

a value. Attributes are accessed by opening the object that they are attached to; hence, they are not

independent objects. Typically an attribute is small in size and contains details about the object that

it is attached to.

Attributes look similar to HDF5 datasets in that they have metadata such as data type and dataspace.

However, unlike HDF5 datasets, HDF5 attributes do not support partial I/O operations and cannot be

compressed or extended [2].

HDF5 dataspace

The HDF5 dataspace must be defined prior to defining an HDF5 dataset or an attribute. The

dataspace defines some metadata such as the size and shape of the dataset or attribute raw data

(i.e., the number of dimensions and the size of each dimension of the multidimensional array in

which the raw data is represented) [2].

HIERARCHY OF A MULTI-FAST5 FILE
The root group (e.g. /fmh_15… in the snapshot below) contains a group for each read that is named

as “read_” followed by the read identifier (e.g. read_001f4… in the snapshot below):

2

3

Under each read group, there are the following groups:

● Raw

● channel_id

● context_tags

● tracking_id

● Analyses

Note that the Analyses group is only available in base-called FAST5 files. The groups found in a FAST5

file that has not been base-called are shown in the snapshot below:

As the name suggests, Raw contains the raw signal (raw data acquisition values) and associated

metadata. channel_id contains (but is not limited to) parameters useful for converting the raw signal

into pico-ampere values. context_tags and tracking_id contain global information that are common

to the sequencing run. More information on these groups is provided below.

The Analyses group is for storing data resultant from various downstream analyses, such as

base-calling. For instance, if the Guppy base-caller is run with the option to output base-called FAST5

files, those output FAST5 files will contain this Analyses group. Analyses groups can be used by

custom software (e.g. Tombo) for storing data from additional downstream analyses.

In the following subsections we provide detailed descriptions of groups mentioned above, except the

Analyses group. Since we are concerned with the raw signal data, basecalled data is not in the scope

of this document.

Root_group

Root group has two attributes file_type (note that file_type is only available in multi-fast5 from

version 2.2 onwards) and file_version. Note that we do not make any assumptions about

file-structure based on FAST5 version numbers, because we have observed some inconsistencies

across different files of the same version, and we would discourage users from doing so.

1. file_type
Example value: multi-read
Data type: String

2. file_version
Example value: 2.2
Data type: String

4

Read

A read group has two attributes run_id and pore_type (note that pore_type is not available in

multi-fast5 v2.0).

1. run_id

The value of this attribute is constant across all the read groups.

Example value: fe697f519ab04ba540bc4fe93f7cbd86669f38ca

Data type: String

2. pore_type

In existing FAST5 versions, this value is empty. This attribute may be used in the

future to distinguish different pore types within a single flow cell.

Example value: <not set>

Data type: String

Raw

Raw group contains one dataset and seven attributes. The dataset is the raw signal, which is a series

of 16-bit integers (HDF5 Datatype = H5T_STD_I16LE). These are the integer values directly coming

from the data acquisition process (analog to digital converter). This raw signal can be converted into

pico Ampere (pA) values using attributes available in the channel_id group (explained later).

The seven attributes from the Raw group are listed below with a description of each attribute,

example values and the data type. Understanding these descriptions require a brief understanding of

an ONT flow cell. A flow cell has multiple channels allowing multiple DNA/RNA strands to be

sequenced in parallel. For instance, a MinION flow cell has 512 channels and thus can sequence 512

strands in parallel. Each channel contains one or more wells3. For instance, a MinION flow cell has 4

wells per channel. The wells within a channel are connected to a multiplexer (MUX), a switch that

controls which of the four wells in the channel is controlled and read out by the circuits. Please refer

to reference [3] or [4] for more information about channels and multiplexers.

Note that some of the information below is extracted from ONT document [1].

1. read_number

A unique number within each channel counted upwards from zero [1]. Note that not

all reads generated are “strand” reads, but only strand reads are written to the final

fast5 file, so some read numbers may be absent.

Example value: 17981

Data type: 32-bit signed integer

2. read_id

A unique identifier for the read. This is a Universally unique identifier (UUID) version

4 and should be unique for any read from any device.

Example value: 00592138-f120-4ab5-9916-c5567adb8e29

Data type: String

3 Each well should ideally contain one pore

5

3. start_time

The start time of the read. The unit for start_time is ‘number of signal samples’, so

start_time has to be divided by sampling rate (Read_xxxx/channel_id/sampling_rate)

to get the start time in seconds (i.e. the time since the run was started).

Example value: 335845487

Data type: 64-bit unsigned integer

4. duration

The duration of the read. The unit for duration is also ‘number of signal samples’.

Example value: 1467

Data type: 32-bit unsigned integer

5. start_mux

The MUX setting4 for the channel when the read began. Due to timing issues this can

sometimes reflect what the MUX was just before the read began; this will only

matter for reads that start immediately after a MUX change.

Example value: 4

Data type: 8-bit unsigned integer

6. median_before

The estimated median current level immediately preceding the read. In most cases

this can be used as an estimate of the open pore level5.

Example value: 238.78225708007812

Data type: 64-bit floating-point

7. end_reason

This is a new attribute in FAST5 v2.2 onwards.

Example value: unblock_mux_change

Data type: 8-bit enum

ATTRIBUTE "end_reason" {

DATATYPE H5T_ENUM {

H5T_STD_U8LE;

"unknown" 0;

"partial" 1;

"mux_change" 2;

"unblock_mux_change" 3;

"signal_positive" 4;

"signal_negative" 5;

}

Channel_id

This group has attributes that are relevant to the channel that sequenced a given read. The

channel_id group has the following attributes.

1. channel_number

The channel number from which the read was acquired.

Example value: 504

5 open-pore state is when there is no strand inside the pore

4 out of the wells in the channel, which well the mux is set to sequence

6

Data type: String

2. digitisation

The digitisation is the number of quantisation levels in the Analog to Digital

Converter (ADC). That is, if the ADC is 12 bit, digitisation is 4096 (2^12).

Example value: 8192.0

Data type: 64-bit floating-point

3. offset

The ADC offset error. This value is added when converting the signal to pico ampere.

Example value: 10.0

Data type: 64-bit floating-point

4. range

The full scale measurement range in pico amperes.

Example value: 1441.389892578125

Data type: 64-bit floating-point

5. sampling_rate

Sampling frequency of the ADC, i.e., the number of data points collected per second

(in Hertz).

Example value: 4000

Data type: 64-bit floating-point

Of these attributes, digitisation, offset and range can be used to transform the raw signal in the Raw

group (raw ADC values), to pico-ampere current values as follows:

signal_in_pico_ampere = (raw_signal_value + offset) * range / digitisation

Context_tags

The context_tags group has global attributes that describe the sequencing run. The attributes under

the context_tags group are listed below with short descriptions. The data type of the value of all the

attributes listed under context_tags group is String.

1. barcoding_enabled

Indicates if barcode demultiplexing is enabled during live basecalling

Example value: 0

2. experiment_duration_set

Indicates the duration of the experiment selected when starting the sequencing run

(in minutes)

Example value: 4320

3. experiment_type

Indicates the type of the experiment, for instance, genomic_dna or rna.

Example value: genomic_dna

4. local_basecalling

Indicates if live base calling is enabled or not (set to 1 or 0).

Example value: 1

5. package

This attribute relates to the Bream package

7

[https://github.com/nanoporetech/minknow_lims_interface]

Example value: bream4

6. Package_version

Example value: 6.0.7

7. sample_frequency

Typically the same as the sampling_frequency in the channel_id group

Example value: 4000

8. sequencing_kit

The sequencing kit selected by the user in the GUI, for instance, sqk-lsk109 or

sqk-rna002. [https://store.nanoporetech.com/sample-prep.html]

Example value: sqk-lsk109

There can be additional attributes such as basecall_config_filename, depending whether live

basecalling was turned on/off when the sequencing run was started.

Tracking_id

The tracking_id group has global attributes relevant to the sequencing run and the sequencing

device. These are mostly for internal use by ONT, who have assisted us in providing the definitions

below. The data type of the value of all the attributes listed under tracking_id group is String.

1. asic_id

Application Specific Integrated Circuit identifier (ASIC) of the flow cell (unique

number of the chip). Enables tracking of batches of chips.

Example value: 213553007

2. asic_id_eeprom

Identifier of the ASIC’s electrically erasable programmable read-only memory

(EEPROM) of the flow cell.

Example value: 5309577

3. asic_temp

The temperature in degrees celsius of the ASIC chip at the start of the sequencing

run.

Example value: 28.867193

4. asic_version

The version of ASIC being used.

Example value: IA02D

5. auto_update

Whether auto update in Minknow is enabled or not.

Example value: 0

6. auto_update_source

The link to the Minknow update source.

Example value: https://mirror.oxfordnanoportal.com/software/MinKNOW/

7. bream_is_standard

Bream is one of the software for controlling sequencing.

Example value: 0

8

https://github.com/nanoporetech/minknow_lims_interface
https://store.nanoporetech.com/sample-prep.html

8. configuration_version

The version of the configuration system in MinKNOW including the experiment

scripts.

Example value: 4.0.13

9. device_id

The serial ID of the MinION or device position for GridION/PromethION.

Device position on GridION/PromethION refers to the ID of the bay (slot where the

flowcell is put) on the device.

Example value: X2

10. device_type

The device type, that is whether MinION, PromethION or GridION.

Example value: gridion

11. distribution_status

Stable vs dev/alpha/beta status.

Example value: stable

12. distribution_version

MinKNOW version.

Example value: 20.06.9

13. exp_script_name

The name of the experiment script run along with optional parameters passed to it,

based on what kits are selected in MinKNOW for sequencing.

Example value: sequencing/sequencing_MIN106_DNA:FLO-MIN106:SQK-LSK109

14. exp_script_purpose

The ‘purpose’ of the experiment script. For example, whether the experiment was a

real sequencing run or a simulation playback.

Example value: sequencing_run

15. exp_start_time

Start time of sequencing run in ISO 8601 standard.

Example value: 2020-09-08T01:23:21Z

16. flow_cell_id

Unique ID for the flowcell, used by ONT to track flowcell metrics and warranty.

Example value: FAN43349

17. flow_cell_product_code

The type of flowcell (product code of the flowcell and pore type). These will be

different based on R9.4.1, R10.3, R9.5, PromethION, etc.

Example value: FLO-MIN106

18. guppy_version

Guppy version being used by MinKNOW.

Example value: 4.0.11+f1071ce

19. heatsink_temp

The temperature (in degrees celsius) of the heat sink on the ASIC at the start of the

sequencing run.

Example value: 33.996094

20. hostname

The hostname of the computer/machine doing the sequencing run.

9

Example value: GXB02243

21. installation_type

This is the MinKNOW installation type.

Example value: nc

22. local_firmware_file

Example value: 1

23. operating_system

The operating system and version of the computer performing the sequencing run.

Example value: ubuntu 16.04

24. protocol_group_id

This is the unique ID given to the group of acquisition periods during a run, denoted

by run_id. Multiple acquisition periods can occur during a single “run”, depending on

the protocol.

Example value: GLFN180082

25. protocol_run_id

This is a unique identifier for the experiment GROUP (just in case the name given by

the user is not unique). This is the same for each run of the same experimental

group.

Example value: f2c69573-5fef-43b8-8d81-9cb20634aa7c

26. protocol_start_time

The start time of the data acquisition periods for a protocol_group_id. Appeared in

FAST5 2.3.

Example value: 2021-08-26T15:34:52.186021+10:00

27. protocols_version

Allows MinKNOW to track various protocols for barcoding, kits, etc.

Example value: 6.0.7

28. run_id

The unique run ID which will be different for each run (data acquisition period), even

in the same experiment group. Whenever MINKNOW starts an experiment script for

data acquisition, a new run_id is generated.

Example value: 07770780274b0e3703f00d969291b1a37a5a6be1

29. sample_id

Sample ID is the name given by the user for the sample.

Example value: NA12878

30. usb_config

Information about the connection between the flowcell and the computer.

Example value: GridX5_fx3_1.1.3_ONT#MinION_fpga_1.1.1#bulk#Auto

31. version

MinKNOW version.

Example value: 4.0.3

Note that the above list is not an exhaustive list. For instance, FAST5 files generated on the

PromethION have additional attributes such as hublett_board_id and satellite_firmware_version.

10

FAST5 VERSIONS & THEIR ATTRIBUTES

The following table shows the availability (and unavailability) of attributes in un-basecalled

multi-FAST5 files for different file versions.

Green cells = attribute available.

Group Attribute name V2.0 V2.2 v2.3

/ file_type

file_version

/read run_id

pore_type

/read/Raw start_time

duration

read_number

start_mux

read_id

median_before

end_reason

/read/channel_id digitisation

offset

range

sampling_rate

channel_number

/read/context_tags barcoding_enabled

experiment_duration_set

experiment_type

local_basecalling

package

package_version

sample_frequency

sequencing_kit

experiment_kit

filename

user_filename_input

/read/tracking_id asic_id

asic_id_eeprom

asic_temp

asic_version

auto_update

auto_update_source

bream_core_version

11

bream_is_standard

bream_ont_version

bream_prod_version

bream_rnd_version

configuration_version

device_id

device_type

distribution_status

distribution_version

exp_script_name

exp_script_purpose

exp_start_time

flow_cell_id

flow_cell_product_code

guppy_version

heatsink_temp

host_product_code

host_product_serial_number

hostname

installation_type

local_firmware_file

operating_system

protocol_group_id

protocol_run_id

protocol_start_time

protocols_version

run_id

sample_id

usb_config

version

CONSTANT & VARIABLE ATTRIBUTES

Many FAST5 attributes are identical amongst all the reads within a single sequencing run (within

multi-FAST5 files as well as amongst different multi-FAST5 files). For example, all reads from a given

experiment will have the same run_id. Some attributes are variable between different reads, even

within a single multi-FAST5. For example, each read has a different read_id. All the attributes in

contex_tags and tracking_id are constant across all reads in a single sequencing run, whereas most of

the attributes in Raw and channel_id are variable between reads (with a few exceptions).

The variable attributes amongst all groups (except the Analyses group) are:

● duration

● end_reason (not in version 0.6 but in 2.2)

12

● median_before

● read_id

● read_number

● start_mux

● start_time

● channel_number

● offset

Note that the dataset “Signal” obviously has variable data. All the other attributes are contant.

ADVANCED INFORMATION

Symbolic links

For a given FAST5 file, the values of the attributes belonging to the two groups, context_tags and

tracking_id are the same for all the reads in that FAST5 file. Hence only the first read_xxxx group has

the actual attributes. The rest of the read_xxxx groups maintain symbolic links [2] to the first

read_xxxx group. One can observe the linking structure of a FAST5 file using a utility program called

h5dump developed by the HDF5 group.

The following is an example output for a FAST5 file where read_000200a4* is the first read group. As

listed below the rest of the read groups’ context_tags and tracking _id attributes maintain links

(symbolic links) to the context_tags and tracking_id attributes of the first read group respectively.

This observation was valid for all the FAST5 files we have examined.

ONT h5 validator

Ont_h5_validator is a tool developed by ONT to check if a given FAST5 file complies with the FAST5

schema. This tool only considers a subset of the complete FAST5 schema to validate a file.

Single-FAST5 format fields

The groups, attributes and some example values for a single-FAST5 file are provided below for the

sake of completeness, despite no longer being in use.

PreviousReadInfo

previous_read_id = cf435984-627d-450d-a81d-2a55c6060c80

previous_read_number = 80

Read

13

https://github.com/nanoporetech/ont_h5_validator

duration = 30695

median_before = 206.2032470703125

read_id = b3d473e9-34f0-4ad6-a030-61ba6ab458bc

read_number = 99

start_mux = 4

start_time = 318648

channel_id

channel_number = 707

digitisation = 2048.0

offset = -196.0

range = 748.5801660113588

sampling_rate = 4000.0

context_tags

experiment_duration_set = 3840

experiment_type = genomic_dna

fast5_output_fastq_in_hdf = 1

fast5_raw = 1

fast5_reads_per_folder = 4000

fastq_enabled = 1

fastq_reads_per_file = 4000

filename = pct0028_20181029_0004a30b00232bec_1_e11_h11_sequencing_run_lxbab132606_84140

flowcell_type = flo-pro002

kit_classification = none

local_basecalling = 1

local_bc_comp_model =

local_bc_temp_model = template_r9.4_450bps_5mer_raw.jsn

sample_frequency = 4000

sequencing_kit = sqk-lsk109

user_filename_input = lxbab132606

tracking_id

asic_id = 0004A30B00232BEC

asic_id_eeprom = 0004A30B00232BEC

asic_temp = 36.990513

asic_version = Unknown

auto_update = 0

auto_update_source = https://mirror.oxfordnanoportal.com/software/MinKNOW/

bream_is_standard = 0

device_id = 1-E11-H11

device_type = promethion

exp_script_name = 59dfa94107ee2b6c0f4be0822482e7da35b4116a-da65898430ab8c4bfe54ba7064f0301390b76211

exp_script_purpose = sequencing_run

exp_start_time = 2018-10-29T01:40:23Z

flow_cell_id = PAD11989

heatsink_temp = 41.996017

hostname = PCT0028

hublett_board_id = 013220e36be4c748

hublett_firmware_version = 2.0.5

installation_type = nc

ip_address =

local_firmware_file = 1

mac_address =

operating_system = ubuntu 16.04

protocol_run_id = e3b445eb-5626-48ef-acc2-b28bcc611009

protocols_version = 0.0.0.0

run_id = 855cdb4b269484b72699b681e539e090c4a50bbb

sample_id = LXBAB132606

satellite_board_id = 0000000000000000

satellite_firmware_version = 2.0.4

14

usb_config = firm_1.2.3_ware#rbt_4.5.6_rbt#ctrl#USB3

version = 1.14.2

REFERENCES

[1] Oxford Nanopore Technologies. Read .fast5 files from the instrument. technical_documents

https://community.nanoporetech.com/technical_documents/data-analysis/v/datd_5000_v1_revn_22aug2016/

read-fast5-files-from-th (2016).

[2] The HDF5 Group. HDF5 User’s Guide: HDF5 Release 1.6.10. https://support.hdfgroup.org/HDF5/doc1.6/UG/

(2009).

[3] Lu, H., Giordano, F. & Ning, Z. Oxford Nanopore MinION Sequencing and Genome Assembly. Genomics,

Proteomics & Bioinformatics vol. 14 265–279 (2016).

[4] Lannoy, C. de, de Lannoy, C., de Ridder, D. & Risse, J. The long reads ahead: de novo genome assembly using

the MinION. F1000Research vol. 6 1083 (2017).

15

http://paperpile.com/b/nmTcWO/UYBv
https://community.nanoporetech.com/technical_documents/data-analysis/v/datd_5000_v1_revn_22aug2016/read-fast5-files-from-th
https://community.nanoporetech.com/technical_documents/data-analysis/v/datd_5000_v1_revn_22aug2016/read-fast5-files-from-th
http://paperpile.com/b/nmTcWO/UYBv
http://paperpile.com/b/nmTcWO/Mb5d
https://support.hdfgroup.org/HDF5/doc1.6/UG/
http://paperpile.com/b/nmTcWO/Mb5d
http://paperpile.com/b/nmTcWO/Mb5d
http://paperpile.com/b/nmTcWO/pWgl
http://paperpile.com/b/nmTcWO/pWgl
http://paperpile.com/b/nmTcWO/fDZf
http://paperpile.com/b/nmTcWO/fDZf

