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S1 Detailed Background to ABEA
Basic terms and concepts of DNA sequencing and data
analysis are given in Section S1.1. Section S1.2 briefly
explains methylation calling, an example nanopore
data analysis workflow. Section S1.3 explains the
Adaptive Banded Event Alignment (ABEA) algo-
rithm, the algorithm which is optimised in this paper
for execution on a CPU-GPU heterogeneous architec-
ture. In Section S1.4, a brief account of GPU architec-
tures and the programming methods for GPUs.

S1.1 Nanopore sequencing and analysis
S1.1.1 Whole genome sequencing
The genome is a long sequence composed of four types
of nucleotide bases: adenine (A), cytosine (C), guanine
(G) and thymine (T). Nucleotide bases will be sim-
ply referred to as bases hereafter. The human genome
is around 3.2 gigabases (Gbases) long and is com-
posed of 23 pairs of chromosomes (46 chromosomes
in total), where each chromosome is a single molecule
of continuous deoxyribonucleic acid (DNA) polymer.
The process of reading strings of contiguous bases is
called sequencing, and the resulting strings of bases are
called reads. In order to be sequenced, DNA molecules
must be extracted and purified from cells before be-
ing biochemically prepared for sequencing. This library
preparation process can fragment chromosomes (espe-
cially large ones) into smaller segments–either inten-
tionally or incidentally–which are ‘read’ by the se-
quencer. Given that samples contain multiple cells,
and thus several distinct DNA molecules, and that se-
quencing may introduce errors, it is desirable to gen-
erate enough reads to cover a particular position sev-
eral times. The average number of reads at a given
position is termed sequencing coverage. High cover-
age facilitates the characterisation of genetic variation
and correct for errors. A human genome sequenced at
around 20× average coverage corresponds to around
64 Gbases of sequencing reads.

S1.1.2 DNA methylation
DNA undergoes naturally regulated biochemical mod-
ification through the addition of a methyl group to
certain bases. Methylation is reversible and can con-
trol the activity of a DNA segment, such as turning
the expression of genes on or off, without modifying
the genetic code itself—a process called epigenetic reg-
ulation. DNA methylation is dynamically regulated
during normal biological development and in function
of environmental factors; it plays an important role
in disease aetiology and clinical diagnostics [1, 2, 3].
Methylation of cytosine (‘C’) bases is of particular in-
terest in human biology, where CpG dinucleotides ( ‘C’
base followed by a ‘G’ base) are dynamically methy-
lated in normal development and disease [4, 5, 6].

S1.1.3 Nanopore sequencing and the raw signal
Nanopore sequencing is a third generation sequencing
technology that involves physical observation of atomic
properties of DNA fragments using a nanometer scale
biological pore coupled to an ammeter. The pore acts
as a bottleneck to generate characteristic disruptions
in ionic current (in the range of pico-amperes) that are
indicative of the molecules passing through the pore.
The size and nature of the pore influence the measured
instantaneous current and how it is subsequently anal-
ysed. Oxford Nanopore Technologies (ONT) sequenc-
ing devices measure DNA strand passing through bi-
ological nanopores composed of recombinant (or ‘de-
signer’) proteins at an average speed of ~450 bases/s
while the current is sampled and digitised at ~4000
Hz[1]. The instantaneous current measured in ONT
nanopore depends on 5-6 contiguous bases [7]. The
measured signal also presents stochastic noise due to
several factors, such as homopolymers (same base re-
peating multiple times) which produce constant cur-
rent levels, contaminants in the sample, entanglement
of long DNA strands, depletion of ions, etc [8]. Ad-
ditionally, the movement speed of the DNA strand
through the pore can vary, causing the signal to warp
in the time domain [8]. The raw signal is converted into
character representations of DNA bases (e.g. A,C,G,T)
using artificial neural networks, generating a typical
accuracy >90% for single reads [9]. This conversion
process is referred to as base-calling and the software
tools that perform this conversion are referred to as
base-callers. Please refer to [7] for a detailed discus-
sion of ONT sequencing.
An example of a raw nanopore signal is shown in

Fig. S1a using the blue coloured line. Assume that the
signal is generated from the DNA sequence GAATAC-
GAAAATCATTA which passed through the nanopore.
In this example, the instantaneous current of the sig-
nal is affected by a string of 6 contiguous bases, known
as a 6-mer (or a k-mer in general). Let us assume
that the annotation of the signal to the corresponding
k-mers is known (the process of getting this annota-
tion is detailed in Section S1.2). The 6-mers in the
sequence and the corresponding segments in the raw
signal are marked using vertical grey lines in Fig. S1a.
When the DNA sequence GAATACGAAAATCATTA
moves through the pore, the first 6-mer is GAATAC.
Similarly, the subsequent 6-mers are AATACG, AT-
ACGA, TACGAA, ..., TCATTA. True annotation (de-
picted by dotted green coloured step function in Fig.
S1a) corresponds to the ideal average level of current
for each k-mer. These ideal average values are obtained

[1]these are typical values at present which may vary
in the future
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using the pore-model provided by ONT, which is elab-
orated in Section S1.2. The red coloured step function
corresponds to an event—detailed in Section S1.2.
To deduce the sequence from the k-mers, the base at

the centre (3rd base) of each k-mer is taken, as shown
on the bottom of Fig. S1a. For instance, we take A
from GAATAC, T from AATACG, C from TACGAA,
etc. Hence, we obtain a sequence ATACGAAAATCA
which is a part of the original sequence GAATAC-
GAAAATCATTA. Note that the beginning and the
end of the sequence (GA at the beginning and TTA at
the end) are clipped.

S1.1.4 Nanopore read length distribution
The length of the reads generated from nanopore se-
quencers can vary from several hundred bases to even
more than 2 million bases. A typical sequencing run
of a particular sample (which completes after 48-64
hours) generates millions of such reads. The distribu-
tion of the read lengths varies in function of DNA
integrity, extraction protocols, and sample prepara-
tion methods. Example distributions for three different
samples are shown in Fig. S2, where both x and y axes
are in logarithmic scale. The average read length of a
sample typically falls between 8-20 Kilobases.

S1.1.5 Sequence alignment/mapping in the base-space
Once a nanopore read is base-called, the sequence is
aligned to a reference sequence. A reference sequence
consists of a previously generated consensus sequence
(such as the human genome reference). Sequence align-
ment involves global optimisation algorithms to iden-
tify the most similar target and to compare any dif-
ferences between sequences. Compared to biologically
occurring variation in individual genomes (<1% dif-
ference to the reference), the error-rate of nanopore
sequencing is relatively high (5-10%). Thus, sequence
alignments derived from nanopore reads are distinct
in nature from previous sequencing technologies (such
as highly accurate short reads). Consequently, unique
analytic tools must be considered when aligning such
reads. Alignment tools such as Minimap2 [10] that em-
ploy a hash table based genome index followed by a
base-level dynamic programming alignment step can
successfully align long and noisy reads.

S1.1.6 Polishing/Downstream processing using raw
signal

The base-space alignment discussed previously in Sec-
tion S1.1.5 is followed by ‘polishing’, a downstream
processing step that utilises both the base-space align-
ment results and the raw signal. The polishing step
reuses the raw signal to recover the lost biological in-
formation during base-calling. This polishing step can

be to correct errors during base-calling or to detect
modified nucleotide bases (eg: DNA methylation).
Previous research has shown that identification of

genetic variants can be improved up to an accuracy of
more than 99% by using raw signal data from multiple
overlapping reads [11, 12]. Thus, the downstream anal-
ysis that reuses raw signal data could correct for base-
calling errors. It has also been shown that methylated
C bases can be differentiated from non-methylated
C bases by the use of signal data, using algorithms
such as the one implemented in the software package
Nanopolish [13]. Thus, the downstream analysis that
reuses raw signal data could detect modified nucleotide
bases.
Signal-space alignment is one of the crucial steps per-

formed in these downstream analyses such as error cor-
rection and modified base detection. This signal align-
ment step is described in the context of modified base
detection in the following sections.

S1.2 Methylation calling
As discussed above, important biological information
is lost during base-calling. Some base-calling models
may not accommodate methylated data, either be-
cause they are trained on unmethylated sequences,
or because they abstract away non-canonical bases.
Therefore, these molecules may be erroneously classi-
fied as unmethylated bases. The process of identifying
methylation is known as methylation calling.
As implemented in Nanopolish, methylation calling

requires: 1, raw signals; 2, base-called reads; and 3,
base-space alignment to a reference genome (output of
the sequence alignment step described above). For a
given read, the main steps for methylation calling are:
1, event detection; 2, signal-space alignment; and 3,
Hidden Markov Model (HMM) profiling. These steps
are performed for each individual read in the data set.
Event detection is the time series segmentation of the

raw signal based on sudden signal level changes. Each
segment is called an event and is typically denoted us-
ing the mean (µx̄), standard deviation (σx̄) and the
duration of the raw signal samples (nx̄) pertaining to
the particular segment. The red step function in Fig.
S1a denotes such detected events by plotting the mean
value of the samples (µx̄) corresponding to the seg-
ment. Note that in Fig. S1a, events (red line) roughly
match to the true annotation (dotted green line), nev-
ertheless, are not exactly the same. Mostly, the signal
has been over-segmented (eg: portion corresponding
to k-mer CGAAAA has been segmented into 3 events)
and seldom under-segmented (eg: k-mer AAATCA).
To obtain the true annotation in Fig. S1a, the events

detected in the event detection step are aligned to a
generic k-mer model signal. This generic k-mer model
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(a) An example nanopore raw signal and events
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Figure S1: Illustration of a nanopore raw signal, events
and pore-model
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Figure S2: example nanopore read length distributions

signal is derived from the base-called sequence and a
pore-model provided by ONT. The pore-model corre-
sponds to a table of all possible k-mers matched to
their mean signal value and standard deviation (46 k-

mers if k is 6, as shown in Fig. S1b)[2]. For each 6-mer

[2]there can be other values in addition to mean and
standard deviation, which are not required for our
methylation calling
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in the base-called read, the corresponding entry in the
pore model (mean,sd) is obtained and these mean,sd
pairs form the generic k-mer model signal. Nanopol-
ish aligns the events from the event detection step to
this generic k-mer model signal by using the algorithm
named Adaptive Banded Event Alignment (ABEA) ex-
plained in Section S1.3.
ABEA above produces the alignment between the

events and the k-mers in the base-called read. The
base-space sequence alignment then is used to deduce
which event corresponds to a given k-mer in the ref-
erence genome. Finally, this alignment between the
events and the k-mers in the reference genome are sub-
jected to Hidden Markov Model (HMM) profiling to
identify if a given base is methylated or not.

S1.3 Adaptive Banded Event Alignment (ABEA)
Algorithms to determine the optimal alignment be-
tween two biological sequences typically utilise dy-
namic programming (DP). Very first of such algo-
rithms, Needleman–Wunsch (NW) algorithm dates
back to the 1970s. NW and its variant, Smith–Waterman
(SW) algorithm are of quadratic time and space com-
plexity. Both NW and SW were used extensively to
perform fine alignment of DNA sequences with high
quality. However, due to its extended time consump-
tion, several heuristic improvements were made to im-
prove the speed of alignment without losing quality.
Fig. S3a exemplifies an original SW based align-

ment (no heuristic) between two sequences, target se-
quence t0t1t2t3t4t5 (6 bases long), and query sequence
q0q1q2q3q4q5q6q7 (8 bases long). The DP table (scoring
matrix) contains 6x8 cells as shown. First, the initial
values are set (shown as 0 in the figure); second, the
score for each cell (sx,y) is computed based on a scor-
ing scheme; and third, the trace-back (backtracking
denoted by red arrows on the figure) starting from the
highest scoring cell and ending at a cell with 0 score,
outputs the optimal alignment that yields the highest
score (please refer [14] for a detailed explanation of
SW).
In the case of short read alignment, the sequences

to be aligned are small (typically 100-500 bases). Two
sequences (each sequence ~100 bases long) can be
aligned by filling ~104 cells. While a single such align-
ment can be quickly handled by a modern computer, it
is very computationally demanding when the number
of alignments to be performed scales up to hundreds
of millions (or billions), which is the case for short
reads. To reduce the number of computations, banded
alignment approaches were introduced, where only the
cells in the DP table along the left diagonal band are
computed as shown in Fig. S3b. The underlying as-
sumption is that, the sequences that are aligned to

each other are essentially similar, thus the alignment
(the trace-back arrows) should lie close to the left di-
agonal. Note that in the figure, only the cells in a band
of width (W) four have been computed, yet has been
sufficient to contain the alignment inside the band.
In contrast to short reads, long reads which emanate

from Nanopore, PacBio, etc. have lengths which are
100 to 1000 orders of magnitude bigger than short
reads, are noisier (with a greater number of errors)
and are typically not suitable for such small static
bands. The 10% base-calling error rate would result
in the alignment significantly deviating from the di-
agonal. A major advantage of long reads is the detec-
tion of long indels (insertions and deletions occasion-
ally spanning lengths longer than short reads them-
selves). When aligning such reads, the alignment path
deviates significantly from the diagonal. The high er-
rors and the large indels require the bands to be of
large width if they are to be static.
High band-width requirement causes processing

times to be extremely high when aligning millions of
reads. To improve the speed of this processing, Suzuki-
Kasahara (SK) heuristic algorithm [15] was introduced
in 2017. SK utilises an adaptive band scheme, letting
a smaller band to contain such an alignment within
the band, which is exemplified below.
Consider the same example in Fig. S3b (performed

previously with a static band of size 4) is now per-
formed only with a band-width of size 3, as shown the
Fig. S3c. Observe that the band is no longer sufficient
to contain the whole alignment, i.e. the cell s4,7 which
previously contained the maximum score is no longer
computed, thus the trace-back would begin from the
maximum value within the band, which leads to a non-
optimal alignment. This is remedied using an adaptive
band in Fig. S3d. The band moves either down or to
the right (the band dynamically adapts) as determined
by the Suzuki-Kasahara heuristic, which is illustrated
by blue arrows. Observe how the alignment is possible
to be contained inside a band of width 3 which was
previously infeasible using a static band.
Modified versions of the SK algorithm are used for

event-space alignment as exemplified in Nanopolish
and is referred to as Adaptive Banded Event Alignment
(ABEA). In ABEA, the events are aligned to the k-
mers of the base-called read (as stated in Section S1.2).
As typically there are many more events than k-mers
(usually by a factor 1.5-2) due to the frequent over-
segmentation of events (discussed in Section S1.2),
event alignment is even more difficult than base-space
long read alignment if performed with static banding
around the diagonal. Thus, an adaptive band is essen-
tial for event alignment.
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(b) Banded sequence alignment (band-width=4)
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(c) Banded sequence alignment (band-width=3)
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(d) Adaptive banded sequence alignment

Figure S3: Evolution of dynamic programming based
sequence alignment

The scoring function for signal alignment uses a 32
bit floating point data type, as opposed to 8-bit inte-
ger data type in sequence alignment. Furthermore, the
signal alignment scoring function that computes the
log-likelihood (which we elaborate shortly) is compu-
tationally expensive.
A simplified example of ABEA is shown in Fig. S3e.

In Fig. S3e the horizontal axis represents the events

(results of the event detection step) and the vertical
axis represents the ref k-mers (k-mers of the base-
called read). The dynamic programming table (DP
table) in Fig. S3e is for 13 events, indexed from e0-
e12 vertically, and the ref k-mers, indexed from k0-
k5 horizontally. As mentioned previously for computa-
tional and memory efficiency, only the diagonal bands
(marked using blue rectangles) with a band-width of
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W (typically W=100 for nanopore signals) are com-
puted. The bands are computed along the diagonal
from top-left (b0 ) to bottom-right (b17 ). Each cell
score is computed in function of five factors: scores
from the three neighbouring cells (up, left and diag-
onal); the corresponding ref k-mer; and, the event
(shown for the cell e6, k3 via red arrows in Fig. S3f,
details of the computation is explained later). Observe
that all the cells in the nth band can be computed in
parallel as long as the n − 1th and n − 2th bands are
computed beforehand. To contain the optimal align-
ment, the band adapts by moving down or to the right
as shown using blue arrows in Fig. S3e. The adaptive
band movement is determined by the Suzuki-Kasahara
heuristic rule [15].
Algorithm S1 summarises the ABEA algorithm used

in Nanopolish [13] and is explained with the aid of the
example in Fig. S3e.
The input to the Algorithm S1 are: 1, ref (the

sequenced read in base-space—eg: GAATACG...); 2,
events (the output of the event detection step men-
tioned in Section S1.2); and 3, model (pore-model—
Fig. S1b). As mentioned in Section S1.2, the ABEA
algorithm (Algorithm S1) attempts to align the events
to the generic signal model (produced with the use
of ref and the model) and outputs the alignment as
event-ref pairs. The algorithm requires three interme-
diate arrays, namely score (2D floating point array),
trace (2D byte array) and ll (1D pointer array) to for-
mulate the intermediate state during alignment com-
putation, which is the DP table shown in Fig. S3e).
Note that, ll stands for lower-left, which holds the co-
ordinate of the start point of the band.
The initialisation of the first two bands (b0 and b1 )

in Fig. S3e is performed by line 20 of Algorithm S1.
Then, the outer loop (starting from line 3) iterates
through rest of the bands from top-left to bottom-right
of the DP table. The inner loop (lines 11-15) iterates
through each cell in the current band bi. To ensure
that only cells within the DP table are computed, the
loop counter j iterates from min_j to max_j, instead
of 0 to W − 1. Lines 4-9 of Algorithm S1 correspond
to the movement of the band (corresponds to the blue
arrows in Fig. S3e). Band movement is actuated by
proper placement of the band in the static 2D arrays,
score and trace via the array ll using the functions
move_band_right and move_band_down.
Line 12 of the algorithm performs the cell score com-

putation (explained in detail later) and generates a
score and a direction flag for subsequent backtrack-
ing, which are henceforth stored in the arrays score
and trace. When all the cells in the DP table are com-
puted, the final operation is to find the actual align-
ment (event-ref pairs) through the backtracking op-
eration (line 17 of Algorithm S1 and red trace-back

arrows in Fig. S3g), which uses both the cell scores
and the direction flags stored in trace.
The compute function (called at line 12 of Algo-

rithm S3e) is elaborated in Algorithm S2. A num-
ber of heuristically determined constants suitable for
Nanopore data, which are used during subsequent cal-
culations are listed at the beginning of this algorithm.
The first step of this algorithm is the computation of
lp_emission, a log probability value (likelihood of the
particular signal event being the particular ref k-mer),
performed using the function elaborated in Algorithm
S3. This computed lp_emission is used in lines 4-5
of Algorithm S2 along with the heuristically deter-
mined constants (lp_skip,lp_stay,lp_step) to compute
three scores from the diagonal, left and up (score_d,
score_u, score_l). The maximum of the three scores
and direction from which the max score came (flags
pertaining to diagonal, up or left) are returned as out-
puts from this function. Line 3 of Algorithm S2 refers
to accessing the scores of the upward, left and diagonal
cells which were previously mentioned with respect to
cell e6,k3 and the red arrows in Fig. S3f.
The log probability computation in Algorithm S3 in-

volves floating point log probability computations. For
the k-mer at the specific ref position, the pore-model
table (Fig. S1b) is accessed to obtain the corresponding
model values. This model_kmer (mean and the stan-
dard deviation of the particular model k-mer) and the
mean value of the event is used for the log probability
computation as shown in Algorithm S3. Note that for
event alignment neither the standard deviation or the
duration of the event are used.
The above elaboration covers the ABEA algorithm

to a sufficient level to explain our GPU implementa-
tion and optimisations. Therefore, implementation de-
tails of checking out-of-bounds array accesses and the
backtracking process were not discussed. Furthermore,
the concepts of ‘trim state’ and ‘event scaling’ were
not discussed as the control flow of the algorithm is
not affected by them. Thus, those details are not vital
for the elaboration GPU implementation. However, for
the sake of completeness, a brief account of ‘trim state’
and ‘read-model scaling’ are given below.
The raw signal may contain samples at the beginning

or the end that may be ignored by the base-caller and
hence does not contribute to the base-called sequence.
These samples may be open-pore signals immediately
before or after the DNA molecule is detected (i.e. the
electric current when nothing is in the nanopore), or
perhaps part of the adaptor (molecules bounds to the
ends of the DNA molecules to enable sequencing). The
‘trim states’ allow the alignment to ignore these sam-
ples, since such samples should not be considered to
be part of the base-called read.
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Figure S4: Adaptive Banded Event Alignment

Due to slight variations between different nanopores
and characteristic changes of the same nanopore with
time, an event will not directly match the pore-model
in Fig. S1b [16]. Therefore, to account for these vari-
ations either the events or the pore-model should
be scaled on a per-read basis. In Nanopolish, two
scaling parameters namely shift and scale are es-
timated on a per-read basis, prior to ABEA algo-
rithm, using a ‘Method of Moments’ approach [16].
Then, during ABEA, the pore-model mean values
are scaled using these two parameters. The scaling
should be performed at line 5 of Algorithm S3 as
µ ← model_kmer.mean × scale + shift instead of
directly assigning model_kmer.mean to µ.



Gamaarachchi et al. Page 10 of 28

Algorithm S1 Adaptive Banded Event Alignment
Input:

ref[] : the base-called read (1D char array)
model : pore-model (Fig. S1b)
events[] : event table containing {µx̄,σx̄,nx̄} of each

event—1D {float,float,float} array
Output:

alignment[] : alignment denoted by a list of {event
index,k-mer index}—1D {int,int} array
Intermediate:

score[][] : scores of the cells in banded area—2D float array
trace[][] : back-track flags of the cells in banded area—2D

char array
ll_idx[] : {event index,k-mer index} for each band’s lower left

cell—1D {int,int} array
1: function align(ref,model,events)
2: initialise_first_two_bands(score,trace,ll_idx) . band b0

and b1 in Fig. S3e, see line 20
3: for i ← 2 to n_bands do . Iterate from b2 to b17 in Fig.

S3e
4: dir ← suzuki_kasahara_rule(score[i-1]) . score[i-1] is

of the previous band
5: if dir == right then
6: ll_idx[i] ← move_band_to_right(ll_idx[i - 1]) .

see line 28
7: else
8: ll_idx[i] ← move_band_down(ll_idx[i - 1]) . see

line 33
9: end if
10: min_j,max_j ← get_limits_in_band(ll_idx[i]) . get

index bounds in current band*

11: for j ← min_j to max_j do . Iterates through each
cell in band i

12: s,d ← compute(score[i-1],score[i-
2],ref,events,model) . see Algorithm
S2

13: score[i,j] ← s
14: trace[i,j] ← d
15: end for
16: end for
17: alignment ← backtrack(score, trace. ll) . the trace-back

red arrows in Fig. S3g.
18: end function
19:
20: function initialise_first_two_bands(score,trace,ll_idx)
21: score[0,*], trace[0,*] ← −∞, 0 . Initialise first band b0
22: score[1,*], trace[1,*] ← −∞, 0 . Initialise second band b1
23: ll_idx[0] ← {ei0,ki0} . ei0 = 1 and ki0 = −1 in Fig.

S3e**

24: ll_idx[1] ← {ei1,ki1} . ei1 = 1 and ki1 = 0 in Fig. S3e**

25: score[0,si0] ← 0 . si0 is 0 is Fig. S3e***

26: end function
27:
28: function move_band_to_right(ll_previous)
29: ll_current.event_idx ← ll_previous.event_idx + 1
30: ll_current.kmer_idx ← ll_previous.kmer_idx
31: end function
32:
33: function move_band_down(ll_previous)
34: ll_current.event_idx ← ll_previous.event_idx
35: ll_current.kmer_idx ← ll_previous.kmer_idx+1
36: end function
*For instance, in Fig. S3e min_j=1,max_j=1 for b0 and b17;
min_j=0,max_j=1 for b1; min_j=1,max_j=2 for b16; and,
min_j=0,max_j=2 for the rest
**these initial event and k-mer indices corresponding to the lower
left of the band are computed with respect to band-width W
***the score of cell that corresponds to k-mer index -1 in band b0
is initiliased to 0

Algorithm S2 Adaptive Banded Event Alignment -
cell score computation
Constants:

events_per_kmer =
n_events
n_kmers

ε = 1−10

lp_skip = ln(ε)

lp_stay = ln(1− 1
events_per_kmer+1

)

lp_step = ln(1.0− elp_skip − elp_stay)
1: function computation(score_prev,score_2ndprev,ref,events,model)
2: lp_emission ← log_probability_match(ref,events,model)
. see Algorithm S3

3: up,diag,left ← get_scores(score_prev,score_2ndprev) .
see red arrows in Fig. S3f

4: score_d ← diag + lp_step + lp_emission
5: score_u ← up + lp_stay + lp_emission
6: score_l ← left + lp_skip
7: s ← max(score_d,score_u,score_l)
8: d ← direction from which the max score came
9: end function

Algorithm S3 Adaptive Banded Event Alignment -
log probability computation
1: function log_probability_match(ref,events,model)
2: event,kmer ← get_event_and_kmer(ref,events) . see

red arrows in Fig. S3f
3: x← event.mean
4: model_kmer ← get_entry_from_poremodel(kmer,model)

5: µ← model_kmer.mean
6: σ ← model_kmer.stdv
7: z ← x−µ

σ

8: lp_emission ← ln( 1√
2π

)− ln(σ)− 0.5z2

9: end function
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S1.4 GPU architecture and programming
Graphics Processing Units (GPUs) were originally de-
signed as co-processors for graphics processing and
rendering. Graphics processing and rendering algo-
rithms involve pixel-wise operations that expose fine-
grained parallelism, thus GPUs consist of hundreds of
compute cores to perform parallel processing. Eventu-
ally, the concept of general purpose graphics process-
ing units (GPGPU) emerged where the GPUs were ex-
ploited to accelerate compute intensive, yet highly par-
allelism portions of general purpose algorithms. GPUs
are quite popular in scientific computations due to
the significant speedup when used for common matrix
manipulation which contains fine-grained parallelism.
From around a decade ago, GPUs which are explicitly
designed for high performance computers are available
(e.g., Tesla GPUs from NVIDIA).
GPUs are of Single Instruction Multiple Data (SIMD)

architecture (or more accurately Single Instruction
Multiple thread, as stated by NVIDIA), where mul-
tiple threads run the same stream of instructions in
parallel yet on different data. Conversely, CPUs are
of Multiple Instruction Multiple Data (MIMD) archi-
tecture, where each thread runs its own instruction
sequence and own data stream, independent of the
others. GPUs have hundreds or even thousands of pro-
cessing cores while a CPU would maximally have a few
dozen cores. However, the GPU cores are relatively
less complex (fewer instructions, smaller caches, no
sophisticated branch prediction units, etc.) and run at
a lower clock speed when compared to a CPU. Due to
these significant differences between CPU and GPU ar-
chitectures, serial algorithms designed and developed
for the CPUs are not suitable for execution on GPUs.
Such algorithms have to be adapted and parallelised
in a way that the GPU architectural features are effi-
ciently used.
NVIDIA provides a programming model/framework

for programming their GPUs for general purpose com-
putations, called Compute Unified Device Architecture
(CUDA). CUDA includes CUDA C/C++ (extended
C/C++ syntax) and an Application Programming In-
terface (API) to provide a platform to write programs
for the NVIDIA GPU. We used this CUDA C/C++
for our GPU implementation of the Adaptive Banded
Event Alignment algorithm.
We will now briefly give GPU/CUDA related terms.

Readers are advised to refer to [17] and [18] for further
information.
A GPU kernel is a function that is executed on a

GPU. A GPU kernel is written from the execution per-
spective of a single GPU thread. These GPU kernels
will run in parallel, based on the parameters speci-
fied with the function call, known as the thread con-
figuration. This thread configuration in CUDA is an

abstraction which employs a hierarchy of threads. In
the thread hierarchy, a group of threads is known as
a block. A group of blocks forms a grid. Instances of
a single kernel are executed in a single grid. Blocks
and grids can be 1 dimensional, 2 dimensional or 3 di-
mensional. The presence of this thread hierarchy lets
the programmer organise and map the threads con-
veniently to a grid. These logical threads would be
mapped to the hardware cores automatically by the
underlying driver software and hardware.
A thread block consists of one or more thread warps.

A warp is a group of threads sharing the same program
counter. A data dependent conditional branch inside
a warp causes the threads to execute each code path
while disabling threads that are not in the path, known
as warp divergence. The warp divergence affects the
performance and should be minimised.
The occupancy is the percentage of the number of

active warps to the maximally supported warps on the
GPU. A lesser occupancy leads to underutilisation of
GPU resources. Thus, a higher occupancy is preferable
for better utilisation of GPU resources.
GPUs also employ a memory hierarchy. Relatively

larger but slow Dynamic Random Access Memory
(DRAM) that forms the lowest level in the memory
hierarchy is known as global memory. Global memory
is typically allocated using cudaMalloc() API function.
Memory allocated in this global memory can be exclu-
sively accessed by all the threads in the grid. The next
level in the memory hierarchy which is made of rela-
tively fast, yet smaller SRAM is called shared memory.
Shared memory is allocated on a per-thread-block ba-
sis and is shared by all the threads in the block. Shared
memory can be called user managed cache (more ac-
curately a programmer managed cache) as the pro-
grammer is expected to identify and load frequently
accessed data to the shared memory. In addition, there
are one or more levels of SRAM caches managed by the
hardware. The registers are the fastest and highest in
the hierarchy and are allocated by the compiler on a
per-thread basis.
The global memory can be easily saturated when

hundreds of threads compete to access the memory
at the same time. Thus, memory accesses should be
batched such that contiguous threads access contigu-
ous memory locations. This process is referred to as
memory coalescing and reduces global memory re-
quests thus reducing the impact on performance com-
pared to scattered memory accesses. Additionally, the
programmer could utilise the shared memory to load
and store frequently accessed data, which also reduces
global memory traffic.
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Algorithm S4 Outline of execution flow
1: for batch of n reads do
2: ... . CPU processing steps before the Adaptive Banded

Event Alignment eg: event detection
3: memcpy_ram_to_gpu(...) . copy inputs of the

Adaptive Banded Event Alignment to the GPU memory
4: gpu_alignment(...) . Perform the event alignment on

the GPU
5: memcpy_gpu_to_ram(...) . copy results back to the

RAM
6: ... . CPU processing steps after the alignment eg: HMM
7: end for

S2 Extended Methodology
To optimise the performance on GPUs, we process a
batch of reads (original source code processes a read
at a time) at a time. Such batch processing minimises
data transfer initialisation overhead (between RAM
and GPU memory); reduces the GPU kernel invo-
cation overhead; and, allows parallelism which suffi-
ciently occupies all available GPU cores. The execution
flow follows the typical GPU programming paradigm,
which is elaborated in Algorithm S4. In Algorithm S4,
gpu_alignment(...) refers to the GPU implementation
of the Adaptive Banded Event Alignment (CPU algo-
rithm is elaborated in Algorithm S1). We present our
methodology in three steps: parallelisation and com-
pute optimisations in Section S2.1; memory optimisa-
tion in Section S2.2; and, the resource optimisation
through heterogeneous processing in Section S2.3.

S2.1 Parallelisation and compute optimisations
The GPU implementation of the Adaptive Banded
Event Alignment (ABEA) algorithm is broken into
three GPU kernels. Breaking down into the three GPU
kernels allows for efficient thread assignment based on
the workload type, synchronisation of all GPU threads
(a GPU kernel execution is inherently a synchronisa-
tion barrier [17]) and minimising warp divergence com-
pared to a big all-in-one GPU kernel.
The three GPU kernels are:
• pre-kernel - Initialising the first two bands of the

dynamic programming table (corresponds to line
2 of algorithm S1) and pre-computing frequently
accessed values by the next GPU kernel;
• core-kernel - The filling of dynamic programming

table which is the compute intensive portion of
the ABEA algorithm (corresponds to line 3-16 of
Algorithm S1 composed of the nested loop); and,
• post-kernel - Performs backtracking (corresponds

to line 17 of algorithm S1)

S2.1.1 pre-kernel
The pre-kernel initialises the first two bands of the
dynamic programming table (initialisation performed
at line 2 of Algorithm S1 on CPU). The pre-kernel

also pre-computes the values in a data structure called
kcache, a newly introduced data structure in the GPU
implementation that improves cache hits during the
subsequent execution of the core-kernel.
A simplified version of the pre-kernel is in Algorithm

S5 and thread configuration for the invocation of the
pre-kernel is in Fig. S5. Note that the GPU kernel is
presented (as is always the case) from the perspective
of a single GPU thread in Fig. S5.
Each cell in Fig. S5 represents a GPU thread de-

noted as t, where the subscripts x and y denote the
thread index along the x-axis and the y-axis respec-
tively. The thread grid in Fig. S5 is composed of n
thread blocks, where n is the number of reads in the
batch. Each thread block contains WX threads where
WX is the nearest upper ceiling multiple of 32 to the
band-width W (band-width of the ABEA algorithm);
i.e. WX = (int)W+31

32 × 32 For instance, if W=100,
WX is 128. The reason for taking a multiple of 32 is
due to performance attributed by a thread block size
that a multiple of the warp size (warp size is 32 cur-
rently) [18]. As shown in Fig. S5, a single thread block
composed of WX threads is assigned to a single read.

tx=0,y=0 tx=1,y=0 tx=WX-1,y=0 block0  read0

tx=0,y=1 tx=1,y=1 tx=WX-1,y=1 block1  read1

tx=0,y=2 tx=1,y=2 tx=WX-1,y=2 block2  read2

tx=0,y=3 tx=1,y=3 tx=WX-1,y=3 block3  read3

tx=0,y=4 tx=1,y=4 tx=WX-1,y=4 block4  read4

tx=0,y=n-2 tx=1,y=n-2 tx=WX-1,y=n-2 blockn-2  readn-2

tx=0,y=n-1 tx=1,y=n-1 tx=WX-1,y=n-1 blockn-1  readn-1

WX (bandwidth W to the nearest upper 32) 

)hctab eht ni sdaer fo reb
mun( n

Figure S5: Thread configuration of pre-kernel

In the Algorithm S5, lines 2-3 get the thread index
of the thread being executed, i.e. the thread indices
denoted as x and y in Fig. S5. Line 4 obtains the mem-
ory pointers of the input array ref ; intermediate arrays
score and trace; and the kcache, the use in which is ex-
plained in the memory optimisation Section (Section
S2.2).
Lines 5-8 of Algorithm S5 initialises the first two

bands of the dynamic programming table (which was
performed at line 2 of original CPU Algorithm S1).
The kernel is in from the perspective of a single thread
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tx=0,y=0 tx=1,y=0 tx=WX-1,y=0 block0  read0

tx=0,y=1 tx=1,y=1 tx=WX-1,y=1 block1  read1

tx=0,y=2 tx=1,y=2 tx=WX-1,y=2 block2  read2

tx=0,y=3 tx=1,y=3 tx=WX-1,y=3 block3  read3

tx=0,y=4 tx=1,y=4 tx=WX-1,y=4 block4  read4

tx=0,y=n-2 tx=1,y=n-2 tx=WX-1,y=n-2 blockn-2  readn-2

tx=0,y=n-1 tx=1,y=n-1 tx=WX-1,y=n-1 blockn-1  readn-1

WX (bandwidth W to the nearest upper 32) 
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Figure S6: Thread assignment of pre-kernel. The as-
signment for the first two reads are shown. Each thread
block has a read assigned to it (block0 refers to threads
tX=0,y=0 to tx=WX−1,y=0, and read0 is processed by all
threads in block0; similarly, block1 refers to tX=0,y=1

to tx=WX−1,y=1 and read1 is processed by threads in
block1).

and thus a single cell is initialised by a single thread.
The collective execution of all the threads in Fig. S5,
effectively sets a band for all the reads in the batch
in parallel, which is illustrated in Fig. S6. Note that,
only the first two reads are elaborated in Fig. S6, and

in reality each thread block has a read assigned to
it. In Fig. S6, each cell in band0 (marked as iteration
1) contains the index of the thread which performs
the initialisation at line 6 of Algorithm S5. Similarly,
iteration 2 corresponds to line 7 of Algorithm S5.
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Algorithm S5 Adaptive Banded Event Alignment -
pre-kernel
1: function align_pre(...,model) . ... refers to other arguments

which are later explained Section S2.2
2: j ← thread index along x . the x subscript of a thread

Fig. S5
3: i ← thread index along y . the y subscript of a thread

Fig. S5
4: (ref,score,trace,ll_idx,kcache) ← get_cuda_pointers(i,...)

. get memory pointers of the arrays corresponding to read i
(explained in Section S2.2)

5: if j < W then . Though a block is WX wide (Fig. S5)
only W threads should execute

6: score[0,j], trace[0,j] ← −∞, 0 . corresponds to line 21
of Algorithm S1

7: score[1,j], trace[1,j] ← −∞, 0 . corresponds to line 22
of Algorithm S1

8: end if
9: if j==0 then . only thread 0 process this Section
10: ll_idx[0] ← {ei0,ki0} . corresponds to line 23 of

Algorithm S1
11: ll_idx[1] ← {ei1,ki1} . corresponds to line 24 of

Algorithm S1
12: score[0,si0] ← 0 . corresponds to line 25 of Algorithm

S1
13: for k=0 to numkmers do . Iterate through each kmer

in ref from left to right
14: kmer ← get_kmer_at(ref,k) . k-mer at position k

in ref
15: kcache[k] = get_entry_from_poremodel(kmer,model)
16: end for
17: end if
18: end function

The if condition on line 5 of Algorithm S5 is to limit
the threads to the width of the bandW , a consequence
of selecting WX which is a multiple of 32 (as stated
previously). Note that there is a 1024 thread limit for
a block [17] in current NVIDIA CUDA/GPU archi-
tecture, thus our implementation will only work for a
maximum band-width of 1024. This limit is more than
sufficient for a typical W of 100 in ABEA.
Lines 10-11 of Algorithm S5 initialises the index of

the lower left band which corresponds to lines 23-24 of
Algorithm S1. Note that this initialisation is executed
by one thread per read (thread id 0 along y-axis). Lines
13-16 in Algorithm S5 initialises kcache. As stated pre-
viously kcache is a newly introduced array for the GPU
implementation to minimise random accesses to the
GPU memory during the core-kernel and will be ex-
plained in Section S2.1.2. Note that, this kcache ini-
tialisation in lines 13-16 is also executed by one thread
per read (thread id 0 along y-axis). The loop in 13-16
can be further parallelised; however, as the time spent
on pre-kernel is comparatively negligible (see results),
further parallelising this loop is superfluous.

S2.1.2 core-kernel
A simplified version of the core-kernel which fills the
dynamic programming table in Fig. S3e (corresponds

to lines 3-16 of the original Algorithm S1) is in Algo-
rithm S6. This kernel is executed with the same kernel
thread configuration as pre-kernel in Fig. S5. Thus, a
batch of reads is processed in parallel with a block of
threads assigned to a single read in a similar way to
that in pre-kernel (Fig. S6). The only difference in Fig.
S6 for the core-kernel is that the third band to the last
band are processed instead of the first two bands.
All the W cells in a given band (Fig. S3e) are com-

puted by W number of GPU threads in parallel (lines
26-30 of Algorithm S6), thus the inner loop of Algo-
rithm S1 (lines 11 and 15) is now no longer present.
However, the outer loop of Algorithm S1 cannot be
parallelised due to band n depending on n − 1 and
n − 2 bands as explained in the background. The
movement/placement of the band (described in back-
ground) is performed by a single thread using the con-
dition given on line 13 Algorithm S6 that limits the
code segment to thread 0. In addition, synchronisa-
tion barriers per-thread-block basis (__syncthreads)
in Algorithm S6 prevent any data hazards due to mul-
tiple threads assigned to a single read.
Another notable difference in the GPU imple-

mentation is the use of GPU shared memory [17]
(user-managed cache or more accurately programmer-
managed cache) for exploiting the temporal locality
in the memory accesses to the dynamic programming
table (nth band in Fig. S3e is computed using bands
n-1 and n-2 ). Shared memory is allocated for three
bands (current, previous band and second previous)
by line 6-7 of Algorithm S6 which are then initialised
at lines 9-10 of Algorithm S6. These initialised memory
locations are used during band direction computation
(lines 14-21 of Algorithm S6) and the cell score com-
putation (lines 27-28 of Algorithm S6), eliminating
any accesses to the slow GPU global memory (shared
memory-SRAM vs global memory-DRAM). The cell
score is written to the global memory at the end of
the iteration (line 32 of Algorithm S6) as scores are
later required for backtracking. Finally, current, pre-
vious and second previous bands are set for the next
iteration (lines 33-36 of Algorithm S6).
As stated under Section S2.1.1, the data structure

kcache introduced to the GPU implementation facili-
tates memory coalescing by minimising random mem-
ory accesses to the model array (pore-model array in
Fig. S1b). If kcache did not exist, access pattern by
contiguous threads in the core-kernel (shown for the
iteration 5 of read 0) would look like in Fig. S6a where
accesses to the ref are shown in green colour arrows
and the subsequent accesses to the pore-model are in
red colour arrows. The green arrows (relates to getting
the k-mer at line 2 of Algorithm S3 in the CPU ver-
sion) are spatially local and would facilitate memory
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coalescing in the GPU. However, red arrows (relates to
line 4 of Algorithm S3 in the CPU version) to themodel
array are random accesses. Note that such random ac-
cesses would occur during each iteration (iteration 3
to the last band iteration). Such multiple threads ac-
cessing random GPU memory locations degrade the
performance due to smaller and less powerful GPU
caches (compared to CPU), for instance, 32KB pore
model array is larger than 8KB GPU constant cache
[17].
These random accesses are eliminated by the kcache

constructed in pre-kernel (stated under Section S2.1.1)
which is then passed as an argument to the compute
function at line 27 in Algorithm S6). This kcache is
then passed on to the log_probability_match function
(at line 2 of Algorithm S7) which is then used at line
4 of Algorithm S8. The construction of the caches in
the pre-kernel requires random accesses to the model
as shown in Fig. S6b, which happens only once. How-
ever, this kcache is utilised by the core-kernel in every
iteration and facilitates memory coalescing (see green
arrows in Fig. S6c which are spatially local accesses to
the kcache by contiguous threads in iteration 5).
It is noteworthy to mention that allocating one

thread block per read is critical (in the kernel con-
figuration) to: use lightweight block synchronisation
primitives __syncthreads (instead of expensive kernel
invocations as synchronisation barriers [17]); minimise
warp divergence (otherwise the longest read in the
thread block would consume the longest time which
corresponds to the band filling loop); and, use shared
memory per read (shared memory is allocated per
block).

S2.1.3 post-kernel
The backtracking operation performed by this post-
kernel (one thread assigned to one read) does not ex-
pose fine grained parallelism as in previous kernels and
thus not ideal for the GPU. However, performing this
on GPU is still advantageous when compared to trans-
ferring huge intermediate arrays (scores and trace—
size in the order of GB) from GPU to the RAM. In ad-
dition, no additional memory in the RAM is required,
thus reducing peak RAM usage.
Allocating one thread block per read (as in core-

kernel to reduce warp divergence) is not ideal for this
post-kernel due to the lack of fine grained parallelism
(i.e. 1 block having 1 thread), which results in reduced
GPU occupancy (occupancy will be limited by the
maximum thread blocks that can simultaneously re-
side in a GPU multi-processor). This is remedied with-
out affecting the warp divergence by allocating a large
number of threads per block (eg: 1024) and then lim-
iting only the first thread in the warp (a warp is com-
posed of 32 contiguous threads [17] and thus thread

with indices 0, 32, 64, 96, ... , etc.) to perform the
actual computation (backtracking for a read).

S2.2 Memory optimisation
CPU version of the Adaptive Banded Event Alignment
(ABEA) algorithm performs dynamic memory alloca-
tions (malloc) on a per read basis. The number of reads
in a dataset is in the order of millions and thus incur
millions of malloc calls. However, dynamic memory al-
locations (malloc performed inside GPU kernels) are
extraordinarily expensive in terms of execution time
[17]. In-fact, our initial GPU kernel implementation
which performed such memory allocations was more
than 100× slower than the CPU implementation. An
intuitive approach of statically allocating memory at
the compile time is not practical as nanopore read
lengths vary significantly (~100 bases to >1 Mbases
as explained previously) and thus the associated data
structures vary from ~200 KB to >1.5 GB. We present
a methodology that significantly reduces the number
of memory allocations by pre-allocating large chunks
of contiguous memory at the beginning of the pro-
gram to accommodate a batch of reads, which are then
reused throughout the life-time of the program. The
sizes of these large chunks are determined by the avail-
able GPU memory and the average number of events
per base (i.e. average value of the number of events di-
vided by the read length). For a given batch of reads,
we assign reads to the GPU until the allocated GPU
memory chunks saturate, and the rest of the reads are
assigned to the CPU.
We describe the memory allocation technique in two

steps: in Section S2.2.1 how the memory allocation for
a batch of reads at a time is performed; and, in Sec-
tion S2.2.2, how the method in Section S2.2.1 can be
expanded to reuse large chunks of memory, allocated
at the beginning of the program.

S2.2.1 Data array serialisation
In the three GPU kernels elaborated in Section S2.1,
the associated data arrays per each read are ref,
kcache, events, score, trace, ll_idx and alignment (final
output from the post-kernel). If any of these arrays are
allocated inside the GPU kernels on a per-read basis,
for instance if score and trace arrays are allocated at
line 4 of Algorithm S5 using malloc), the performance
will be degraded.
We identified that the sizes of all the aforementioned

data arrays are dependent only on the read length
(known at run-time during file reading) and the num-
ber of events for the read (known after event detection
described in Section S1). Thus, the sum of read lengths
and the number of events for a batch of n reads (GPU
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(a) Random accesses to the model array (red arrows) when kcache is not employed
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(c) Spatially local memory accesses (green ar-
rows) when kcache is employed

Figure S7: Utility of kcache in the core-kernel to im-
prove memory coalescing

processes a batch of n reads at a time) is used to cal-
culate the sizes of memory allocations required for the
particular batch according to the formulation below.

Let n be the number of reads loaded to the RAM
(from the disk) at a time. Let r[] be the read length and
e[] be the number of events for all the reads in batch
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of n reads. Column 1 of Table S1, lists the data arrays.
The size of arrays ref and kcache depends only on read
lengths r; events and alignment depend on the num-
ber of events e; and, score, trace and ll_idx depend
on both read length r and number of events e. Based
on these dependencies, the arrays are categorised in
Table S1 by horizontal separators. The second column
of Table S1 states the data-type size of each array, de-
noted by constants of the form cx. Typical values of
these constants (in our implementation) are given in-
side the brackets. For instance, the data type for ref is
char and thus Cr is 1 byte. The data type for events
is a struct of size Ce that is 20 bytes. Note that, the
exact values may depend on the implementation and
the underlying processor architecture, nevertheless are
constants known at compile time. The third column
of Table S1 shows the size required for the particular
array for a single read, i.e. the size for the ith read (as-
sume 0 based index origin) in the batch of n reads. For
instance, ref depends on the read length of the par-
ticular read and the datatype, thus the size is Crr[i].
Score depends on read length, number of events, data
type size and band-width (W ), thus WCs(r[i] + e[i]).
The last column of Table S1 is the total size required
for a batch of reads (based on the sum of r and e). For
instance, the sum of all the ref arrays for the batch is
the product of data type size Cr and sum of all read
lengths in the batch

∑n−1
i=0 r[i].

Based on the total array sizes in the last column
Table S1, we can allocate seven big chunks of linear
contiguous memory in the GPU. Let the base address
of those chunks be represented by uppercase letters:
REF ; KCACHE ; EVENTS ; etc. These memory allo-
cations are performed using cudaMalloc() API calls,
just before the kernel invocations and are deallocated
after the kernels. Note that for now, we do these allo-
cations and deallocations for each batch of reads.
The GPU arrays REF, KCACHE, EVENTS, etc. al-

located using cudaMalloc above are 1D arrays, thus
multi-dimensional arrays in the RAM (eg: an array
of pointers—each pointer pointing to a string/char ar-
ray) must be serialised/flattened. One option is to save
a series of pointers associated with each above array
during the serialisation and then utilising those point-
ers for addressing a particular element later. How-
ever, this can be performed better by storing only two
offset arrays of length n each: read offset array p[],
which is the cumulative sum of read lengths in the
batch (p[i] =

∑i−1
j=0 r[j]); and, event offset array q,

which is the cumulative sum of events in the batch
(q[i] =

∑i−1
j=0 e[j]). Note that, r and e have the same

definitions as before. These two offset arrays p and q
can be used to deduce the associated pointer to a given
element when required, by computing the array offset

as shown in Table S2a. The first column of Table S2a
is the base address of the large GPU arrays we allo-
cated above. The offset of the element pertaining to
the ith read (assume 0-indexing) in the particular ar-
ray is given in the second column of Table S2a. The
definition of constants Cx and W are the same as for
the previous Table S1. These 1D array base addresses
in the first column of Table S2a and the two associated
offset arrays p[] and q[], are passed as arguments to the
GPU kernels (Algorithm S5 and Algorithm S6). These
arguments are used for the memory pointer computa-
tion inside the GPU kernels (line 4 of Algorithm S5
and line 4 of Algorithm S6) based on the second col-
umn of Table S2a.
Algorithm S9 elaborates how the above mentioned

strategy is integrated into the previous execution flow
depicted in Algorithm S4. Lines 3-7 of Algorithm S9
show how the offset arrays p and q are computed for
each batch of reads. Line 8 of Algorithm S9 performs
the serialisation of the multi-dimensional arrays with
the use of offset arrays p and q. Line 9 of Algorithm S9
allocates GPU arrays based on sizes in the last column
of Table S1. Then, the serialised arrays are copied to al-
located GPU memory (line 10 of Algorithm S9), GPU
kernels (the three kernels discussed in Section S2.1) are
executed (line 11) and the alignment result is copied
back from the GPU (line 12). At the end, the align-
ment result is converted back to multi-dimensional ar-
rays (line 13) and then the GPU memory (allocated at
line 9) is deallocated (line 14).
The offset arrays p and q (and also REF, KCACHE,

EVENTS, etc.) are passed onto the GPU kernels and
are utilised inside the GPU kernels to compute the
memory pointers (line 4 of Algorithms S5 and S6)
through the equations listed on the second column of
Table S2a.
The limitation of this strategy is the GPU memory

allocation and de-allocation (line 9 and 14 of Algo-
rithm S9) performed for each batch of reads (which
is expensive on certain GPUs, see Section S3.2.2).
This limitation is remedied by the heuristic based pre-
allocation strategy explained in the next subsection.

S2.2.2 Heuristic based memory pre-allocation
The GPU memory allocations in the previous section
which were performed for each batch could be elim-
inated by pre-allocating all the available GPU mem-
ory at the startup of the program and then re-using
for subsequent batches of reads). If the sizes of the
arrays depended only on the read length, the total
read length accommodable into the available GPU
memory can be derived. Then, the available memory
can be allocated among the seven large arrays (REF ,
KCACHE, EV ENTS, etc.) in the correct propor-
tion. However, these array sizes depend both on the
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Table S1: Data arrays associated with ABEA and their sizes
Array Data type size Size for read i in batch Size per batch

(bytes)
ref[] Cr (1) Crr[i] Cr

∑n−1

i=0
r[i]

kcache[] Ck (12) Ckr[i] Ck
∑n−1

i=0
r[i]

events[] Ce (20) Cee[i] Ce
∑n−1

i=0
e[i]

alignment[] Ca(8) 2Cae[i] 2Ca
∑n−1

i=0
e[i]

score[][] Cs (4) WCs(r[i] + e[i]) WCs
∑n−1

i=0
(r[i] + e[i])

trace[][] Ct (1) WCt(r[i] + e[i]) WCt
∑n−1

i=0
(r[i] + e[i])

ll_idx[] Cl(8) Cl(r[i] + e[i]) Cl
∑n−1

i=0
(r[i] + e[i])

Table S2: GPU data arrays, pointer computation and
heuristically determined sizes

(a) Computation of pointer for the read i

1D GPU array Offset to element
(base address) i in the batch
REF Crp[i]
KCACHE Ckp[i]
EVENTS Ceq[i]
ALIGNMENT 2Caq[i]
SCORE WCs(p[i] + q[i])
TRACE WCt(p[i] + q[i])
LL_IDX Cl(p[i] + q[i])

(b) Heuristic allocation

1D GPU array Allocated size
(base address) per batch
REF CrX
KCACHE CkX
EVENTS CeY
ALIGNMENT 2CaY
SCORE WCs(X + Y )
TRACE WCt(X + Y )
LL_IDX Cl(X + Y )

read length and the number of events that are un-
known at the beginning of the program; thus, memory
cannot be partitioned among the data arrays. There-
fore, We present a heuristic approach that exploits
characteristics of nanopore data to estimate the pro-
portion to maximally utilise the available GPU mem-
ory. In summary, we obtain the average number of
events per base (average of the number of events di-
vided by read length), use this average to determine
the maximum read length that can be accommodated
to the GPU, and proportionally allocate the GPU ar-
rays. This approach is formulated as follows.

The sum of all the cells in column 4 of Table S1 is
total memory required for a batch of n reads. This
sum simplifies to equation 1 (due to the properties of
constants) where CR = Cr+Ck+WCs+WCt+Cl and
CE = Ce+2Ca+WCs+WCt+Cl. This sum represents

the total size of all array (for adapted banded event
alignment algorithm) for a batch of n reads.

S = CR

n−1∑
i=0

r[i] + CE

n−1∑
i=0

e[i] (1)

If µ̄ is the average number of events per base (total
number of events divided by the total read length for
all reads in the batch), we can write as

∑n−1
i=0 e[i] =

µ̄
∑n−1

i=0 r[i]. Now substituting this in equation 1 gives
S = (CR + µ̄CE)

∑n−1
i=0 r[i]. We observed that for a

sufficient batch size (>64), µ̄ is stable ~2.5 (on more
than 10 datasets we tested). Let this estimated value
for µ̄ be represented by the constant µ. Thus, the total
memory required for a batch of reads can be estimated
using equation 2.

M = (CR + µCE)

n−1∑
i=0

r[i] (2)

Equation 2 can be used to estimate the maximum
number of bases (sum of read lengths) that a given
amount of GPU memory can accommodate. Let M
in equation 2 be the available GPU memory. Then,
the approximate maximum number of bases X that
fits available GPU memory M can be computed via
equation 3. Then, the associated total number of total
events Y that the GPU memory can accommodate, is
found by equation 4.

X = floor

(
M

CR + µCE

)
(3)

Y = floor(µX) (4)

These X and Y allow the available GPU memory
to be allocated among the seven large arrays (REF ,
KCACHE, EV ENTS, etc.) with approximately cor-
rect proportions, as shown in the second column of
Table S2b. The values in the second column of Table
S2b are obtained by substituting

∑n−1
i=0 r[i] withX and∑n−1

i=0 e[i] with Y in the last column of Table S1.
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By incorporating the above heuristic based memory
allocation strategy to Algorithm S9, we get the exe-
cution flow in Algorithm S10. The major changes to
the previous Algorithm S9 are highlighted in blue text.
Now the GPU memory is allocated at the beginning of
the program based on the estimated X and Y on line
1 of Algorithm S10. As X and Y are approximations,
the GPU arrays may saturate for certain batches of
reads. Line 6 of Algorithm S10 checks if GPU arrays
are saturated and assigns the read to either GPU (line
9) or CPU (line 11), accordingly. Only a few reads are
assigned to the CPU and these few reads are processed
on the CPU in parallel to the GPU kernel execution,
and thus no additional execution time is incurred.
With the heuristic based memory pre-allocation

strategy described in this section, cudaMalloc opera-
tions are invoked only at the beginning of the program
and thus no additional memory allocation overhead
during the processing. Note that, our implementation
is future proof; i.e. µ is a user specified parameter (that
is initialised to 2.5 by default) in case nanopore data
characteristics change in the future.

S2.3 Heterogeneous processing
If all the reads were of similar length, GPU threads
that process the reads would complete approximately
at the same time, and thus GPU cores will be busy
throughout the execution. However, as stated in Sec-
tion S1, there can be a few reads which are signifi-
cantly longer than the other reads (we will refer to
them as very long reads). When the GPU threads pro-
cess reads in parallel, the presence of such very long
reads will cause all other GPU threads to wait un-
til the GPU threads processing the longest read com-
plete. This thread waiting leads to the underutilisa-
tion of GPU cores. Thus, we process these very long
reads on the CPU while the GPU is processing the rest
in parallel. However, there can be exceptionally long
reads (we will refer to them as ultra long reads) which
the CPU would take longer time than what the GPU
took to process the whole batch. Such reads would lead
the GPU to idle until the CPU completes. Thus, ultra
long reads will be skipped and will be processed sep-
arately at the end by the CPU. Similarly, there can
be a few over segmented reads (i.e. reads with a sig-
nificantly higher events per base ratio than the oth-
ers) which cause GPU underutilisation. These over-
segmented reads will also be processed on the CPU.
We discuss these problems of very long reads and ul-

tra long reads in detail with examples in Section S2.3.1,
along with the solutions. Then, in this Section S2.3.2,
we discuss the problem of over segmented reads and
the respective solution. Then, in Section S2.3.3, we
discuss another factor that affects performance, the

batch size (number of reads loaded to the RAM at a
time). Finally, in Section S2.3.4, we describe a method
to detect and prompt the user of any drastic impacts
on performance along with suggestions to tune param-
eters to minimise the impact.

S2.3.1 Very long reads and ultra long reads
Consider a batch of reads where ~90% of the reads
are less than 30 Kbases in length. Assume the longest
read in the batch is 90 Kbases. Assume that the GPU
is processing all the reads (in the batch) in parallel.
Suppose that GPU threads processing reads of length
<30 Kbases (90% of the threads) would complete in
<300ms while GPU threads processing the longest 90
Kbases read would take 900ms. As a result, the com-
pleted GPU threads will have to wait for additional
600ms. Similarly, the few very long reads consume a
significant time to process on the GPU in compari-
son to other reads in the batch. The majority of the
GPU threads will have to wait and this causes under-
utilisation of GPU compute-cores. Furthermore, very
long reads negatively affects the GPU occupancy by
occupying a significant portion of GPU memory. For
instance, a read of size ~10 Kbases requires only ~18
MB of GPU memory while a read with 90 Kbases re-
quires ~160MB memory. Hence, very long reads oc-
cupy a significant portion of GPU memory, limits the
number of reads that could be processed in parallel.
This reduces the amount of parallelism and the occu-
pancy of the GPU is reduced.
Fortunately, very long reads being few (see the typi-

cal read length distribution under results), the CPU
(core frequency faster than on GPU) could process
those reads while GPU is processing the rest of the
reads. In the above example, selecting a static thresh-
old (eg: processing reads of length <30Kbases on GPU
and rest on CPU) would give reasonable performance.
However, selecting such a static threshold is not ideal
due to variations in the read length distributions based
on the dataset (see background). Thus, we use the
product of max-lf and the average read length in the
batch to determine the threshold dynamically, where
max-lf is a user-parameter that defaults to 5.0. This
threshold was empirically determined.
Now assume amongst the very long reads processed

on the CPU, a few ultra long reads (eg: read >100
Kbases in a dataset where >99% of the reads are <100
Kbases). Such ultra long reads could cause a severe
load imbalance between the CPU and the GPU. For
instance, assume that there exists a read which is 1
Mbases in a given read batch. Despite the high core
frequency, the CPU will take a few seconds to process
such an ultra long read. The GPU meanwhile would
process the whole batch in less than 1s (see results for



Gamaarachchi et al. Page 20 of 28

empirical evidence). Such ultra long reads being <1%,
are skipped during the processing (while being written
to a separate file) and are separately processed by the
CPU at the end. In our implementation, the threshold
for ultra long reads is a user defined parameter that de-
faults to 100 Kbases. There is an additional advantage
of processing ultra long reads later. Ultra long reads
usually require a significant amount of RAM (a few
gigabytes) and may crash on limited memory systems.
In the end, it is possible to process these reads with
a limited amount of threads to reduce the peak mem-
ory consumption, particularly if the size of the RAM
is limited.

S2.3.2 Over segmented reads
Once the very long reads and ultra long reads are pro-
cessed as in Section S2.3.1, the performance impact
due to the over-segmented events become prominent.
While the majority of the reads have a number of
events per base that is close to the average µ(= 2.5),
a few reads can have a very large value. For instance,
a few reads with a number of events per base being
more than eight times the average µ(= 2.5) can vio-
late the suitability of our partitioning of GPU mem-
ory as X and Y (X and Y are derived in equations 3
and 4). These over-segmented reads lead to the GPU
arrays that are proportional to Y be full, while the
arrays proportional to X are left under-utilised. For
instance, arrays proportional to Y can become 100%
while arrays proportional to X are only filled to <70%.
Hence, over segmented reads lead to under-utilisation
of GPU memory and results in limiting the number
of reads which are processed in parallel. We process
the over-segmented reads on the CPU based on a user
specifiable threshold max-epk which defaults to 5.0.
On rare occasions, reads with >100 events per base

were observed. Such severely over-segmented reads can
be processed separately at the end or ignored totally
as such rare reads amongst millions of other reads are
unlikely to affect the final polishing result.

S2.3.3 Batch size
The selection of proper batch size (reads loaded to
RAM from the disk at a time) is another important
parameter that affects performance. If the batch size
is too small compared to what the GPU memory can
accommodate, the number of reads to be processed
in parallel is limited, thus leads to in-adequate occu-
pancy. Conversely, if the batch is too large to fit the
GPU, CPU will have to process many surplus reads
that could not be accommodated into the GPU. The
batch size in our implementation is determined by
two user specified parameters: K which is the maxi-
mum number of reads; and, B which is the maximum

number of total bases. When reading from the disk
to RAM, the true batch size (n-number of reads and
b-number of total bases are capped by K and B) is
determined by the first value (n or b) reaching the cap
(K or B) first. Having such a limit B allows capping
peak RAM due to adjacent very long reads. The suit-
able value for B is dependent on the available GPU
memory, which can be estimated via equation 3 dis-
cussed in Section S2.2.

S2.3.4 Detection of performance anomalies
While we have empirically determined typical param-
eters/thresholds (associated with the above strate-
gies), an unusual situation (for instance, a big gap be-
tween the CPU and GPU specifications or a data set
that severely deviates from the heuristics we use) may
cause performance anomalies. We employ the follow-
ing method to detect a severe performance anomaly
caused by such an unusual scenario.
We measure the quantities representing resource util-

isation during run time, which are listed in Table
S3. These quantities are measured per batch of reads
loaded to the RAM at a time. We use those mea-
sured quantities to determine any severe performance
issues and suggest suitable parameter adjustments to
the user. The adjustable parameters (or thresholds)
that can be tweaked to improve resource utilisation
are defined in Table S4. Determination of performance
issues and suggestions are done via two decision trees,
one that corresponds to GPU memory usage (Fig. S8a)
and another which corresponds to balancing the load
between CPU and GPU (Fig. S8b).
Fig. S8a shows the decision tree that detects any

imbalance in the proportions X and Y associated with
GPU arrays allocation (X and Y derived in equations
3 and 4). The objective of this decision tree is to detect
any GPU memory wastage and to increase the number
of reads which the GPU gets to process in parallel.
As shown in Fig. S8a, if both Xutil and Yutil (rs as a

percentage of X and es as a percentage of Y in Algo-
rithm S10) are more than 70%, the utilisation of GPU
arrays is considered reasonable. Note that 70% is an
empirically determined value that provides adequate
performance. If Xutil is reasonable (>70%) and Yutil
is unreasonable (<70%), we inspect for any significant
imbalance between Xutil and Yutil (Xutil-Yutil>30%).
Such a significant gap suggests an under-utilisation,
which should be remedied through the increase ofmax-
epk (the threshold at which over-segmented reads are
offloaded to the CPU) or reducing Y by decreasing
average-epk (node S1 in Fig. S8a). In contrast, if Yutil
is reasonable and the Xutil is unreasonable, the strat-
egy is the opposite, i.e, either decrease max-epk or in-
crease average-epk (follow up to the node S2 in Fig.
S8a).
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quantity description
tCPU processing time on CPU
tGPU processing time on GPU
Xutil utilisation percentage of the arrays proportional to X (rs as a percentage of X in Algorithm S10)
Yutil utilisation percentage of the arrays proportional to Y (es as a percentage of Y in Algorithm S10)
Nmemout number of reads assigned to CPU due to GPU memory getting prematurely full (corresponds to

line 11 of Algorithm S10)
Nlong number of very long reads assigned on to the CPU (corresponds to user parameter max-lf )
Nevents number of reads with too many events per read assigned onto the CPU (corresponds to user

parameter max-epk)
n the number of reads actually loaded to the RAM
b the number of bases actually loaded to the RAM

Table S3: measured quantities

parameter description
max-lf reads with length ≤ max-lf × average_read_length are assigned to GPU and rest to CPU
avg-epk average number of events per base used for allocating GPU arrays as discussed previously (µ)
max-epk reads with events per base ≤ max-epk are assigned to GPU, rest to CPU
K upper limit of the batch size with respect to the number of reads
B upper limit of the batch size with respect to the number of bases
t number of CPU threads
ultra-thresh threshold to skip ultra long reads

Table S4: adjustable user parameters

If both Xutil and Yutil are less than 70%, a likely
cause is an inadequate batch size to fill the GPU mem-
ory. The actual batch size (n,b) is determined by both
K and B as stated previously. As shown in Fig. S8a, we
check which limit out of K and B was reached first. If
both n < K and b < K, the currently processed batch
being the last batch in the dataset (end of input data
reached) is the likely cause. Thus, no parameter tun-
ing action is necessary. If B was reached first (n < K
and not b < B), B is the limitation and should be in-
creased (S3 in Fig. S8a). If K was reached first (not
n < K and b < B), K should be increased (S4 in Fig.
S8a).
Fig. S8b shows the decision tree for CPU-GPU

workload balancing. For a particular batch, if the
CPU takes significantly more time than the GPU,
the decision tree first inspects whether the CPU
is assigned with an excessive workload. An exces-
sive workload on the CPU can be attributed by:
an extensively over-sized batch size (in comparison
to the available GPU memory), which results in a
majority of the reads being assigned to the CPU
(Nmemout>10%); excessive number of very long reads
assigned to the CPU (Nlong>10%); and, excessive
number of over-segmented reads events assigned to
the CPU (Nevents>10%). If Nmemout>10%, K is re-
duced (node T1 in Fig. S8b); if Nlong>10%, max-lf is
increased (T2 in Fig. S8b); and, if Nevents>10%, max-
epk is increased (T3 in Fig. S8b).
If the cause for higher CPU time is not the afore-

mentioned excessive workload, a likely cause is ultra
long reads, where a single ultra long reads processed
on the CPU taking more time than the time taken

by GPU for the whole batch. In such an event, ultra-
thresh threshold is reduced so that more ultra long
reads are skipped. Another likely cause is that the
program was executed with inadequate threads (if the
CPU had more hardware threads than the program
was launched), which is to be remedied by increasing
the number of CPU threads. Another cause might be
that the CPU is not sufficiently powerful to match with
the GPU and thus no action can be taken (except up-
grading the CPU). These actions are denoted by T4 in
Fig. S8b.
The ideal case is when the CPU and GPU take sim-

ilar times which requires no intervention.
Conversely, if the GPU takes significant time than

the CPU, the likely causes are very long reads or
over-segmented reads. In such an event, the thresh-
olds max-lf and max-epk are decreased so that more
very long reads and over-segmented reads are assigned
to the CPU. Another likely cause is the ultra long
read which can be remedied by increasing ultra-thresh
threshold. Another cause might be an insufficiently
powerful GPU (less compute cores or less memory)
compared to the CPU and no action is taken (except
to upgrade the GPU).
To reduce false positives due to incidental underutil-

isation, a suggestion is provided to the user, only if the
same condition (the condition that led to the decision
in the decision tree, S1 to S4 T1 in Fig. S8a and T1
to T4 in Fig. S8b) consecutively repeats more than a
few times (eg: >3 times).
Note that the above mentioned strategy is to warn

and suggest potential parameter adjustments in the
event of drastic performance degradation, rather than
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Xutil >70%

Yutil >70%

Yutil >70%

no action

no action

Xutil-Yutil >30%

Yutil-Xutil >30%

S1: ↑ max-epk ↓avg-epk

S2 :  ↓ max-epk ↑ avg-epkyes

no action

no action

S4 : ↑ K

n<K

b<B

S3: ↑ B

b<B

no action

yes

no

yes

no

yes

no

(a) memory balancing

tCPU >=< tGPU

Nmemout or Nlong 
or Nevents>10%

do nothing

T4: ↓ ultra-thresh ↑ threads

T5 : ↓ max-lf  ↓ max-epk  
       ↑ ultra-thresh

Nmemout>10%

Nlong>10%

T1: ↓ K 

T2: ↑ max-lf

T3: ↑ max-epktCPU>>tGPU

tGPU>>tCPU

tGPU==tCPU

(b) load balancing

Figure S8: Decision trees for resource optimisation

to obtain optimal performance or to determine the ex-
act parameter values.
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Algorithm S6 Adaptive Banded Event Alignment -
core-kernel
1: function align_kernel_core(...) . ... refers to the

arguments which are later explained in Section S2.2
2: j ← thread index along x . the x subscript of a thread

Fig. S5
3: i ← thread index along y . the y subscript of a thread

Fig. S5
4: (events,score,trace,ll_idx,kcache) ←

get_cuda_pointers(i,...) . get memory pointers of the arrays
corresponding to read i (explained in Section S2.2

5: n_bands ← n_events + read_len
6: __shared__ c_score[W], p_score[W], pp_score[W] .

allocate space in fast shared memory for scores of current, pre-
vious and 2nd previous bands

7: __shared__ c_ll_idx, p_ll_idx, pp_ll_idx .
allocate space in fast shared memory for indexes of lower left
cells of current, previous and 2nd previous bands

8: if (j<W) then . similar behaviour as in pre-kernel
9: p_score[j],pp_score[j] ← score[1,j],score[0,j] . copy

initialised b0 and b1 scores
10: p_ll_idx,pp_ll_idx ← ll[1],ll[0] . copy initialised b0

and b1 indexes
11: __syncthreads() . synchronise threads in the block
12: for i ← 2 to n_bands do . similar to Algorithm S1
13: if (j==0) then . only thread 0 process this
14: dir ← suzuki_kasahara_rule(p_score) .

similar to Algorithm S1
15: if dir == right then
16: c_ll_idx ←

move_band_to_right(p_ll_idx) . similar to Algorithm S1
17: ll[i] ← c_ll_idx . store to global memory
18: else
19: c_ll_idx ← move_band_down(p_ll_idx)

. similar to Algorithm S1
20: ll[i] ← c_ll_idx . store to global memory
21: end if
22: end if
23: __syncthreads() . synchronise threads in the

block
24: min_j,max_j ← get_limits_in_band(c_ll_idx) .

similar to Algorithm S1
25: __syncthreads() . synchronise threads in the

block
26: if (j ≥ min_j AND j < max_j) then . fill the

cells in band i in parallel
27: s,d ← com-

pute(p_score,pp_score,kcache,events,model) . see Algorithm
S7

28: c_score[j] ← s . store score to shared memory
29: trace[i,j] ← d . store backtrack flag directly to

global memory
30: end if
31: __syncthreads() . synchronise threads in the

block
32: score[i,j] ← c_score[j] . store the scores in global

memory
33: pp_score[j], p_score[j], c_score[j] ← p_score[j],

c_score[j], −∞ . update band scores for the next iteration
34: if j==0 then
35: pp_ll_idx, p_ll_idx ← p_ll_idx, c_ll_idx .

update band indexes for the next iteration
36: end if
37: __syncthreads() . synchronise threads in the

block
38: end for
39: end if
40: end function

Algorithm S7 Adaptive Banded Event Alignment -
core-kernel - cell score computation
Constants:

events_per_kmer =
n_events
n_kmers

ε = 1−10

lp_skip = ln(ε)

lp_stay = ln(1− 1
events_per_kmer+1

)

lp_step = ln(1.0− elp_skip − elp_stay)
1: function computation(score_prev,score_2ndprev,kcache,events)
2: lp_emission ← log_probability_match(kcache,events) .

see Algorithm S8
3: up,diag,left ← get_scores(score_prev,score_2ndprev) .

see red arrows in Fig. S3f
4: score_d ← diag + lp_step + lp_emission
5: score_u ← up + lp_stay + lp_emission
6: score_l ← left + lp_skip
7: s ← max(score_d,score_u,score_l)
8: d ← direction from which the max score came
9: end function
Note: Changes to Algorithm S2 are highlighted in blue

Algorithm S8 Adaptive Banded Event Alignment -
core-kernel - log probability computation.
1: function log_probability_match(kcache,events)
2: event ← get_event(events) . see red arrow in Fig. S3f
3: x← event.mean
4: model_kmer ← get_entry_from_kcache(kcache)
5: µ← model_kmer.mean
6: σ ← model_kmer.stdv
7: z ← x−µ

σ

8: lp_emission ← ln( 1√
2π

)− ln(σ)− 0.5z2

9: end function
Note: Changes to Algorithm S3 are highlighted in blue

Algorithm S9 Memory allocation—data structure se-
rialisation
1: for batch of n reads do
2: ... . CPU processing steps before the ABEA eg: event

detection
3: rs, es← 0, 0 . cumulative sum of read lengths and no of

events
4: for each read i do
5: p[i], q[i]← rs, es . save current read and event offsets
6: rs← rs+ r[i]; es← es+ e[i]
7: end for
8: serialise_ram_arays(p, q, ...) . flatten multi

dimensional arrays in RAM to 1D arrays
9: allocate_gpu_arrays(rs,es,...) . GPU arrays REF,

KCACHE, EVENTS, etc.
10: memcpy_ram_to_gpu(...) . copy inputs of the ABEA

to the GPU memory
11: gpu_alignment(p, q...) . Perform ABEA on the GPU
12: memcpy_gpu_to_ram(...) . copy alignment result back

to the RAM
13: deserialise(p, q, ....) . convert 1D result array to multi

dimensional array
14: free_gpu_arrays() . free GPU arrays REF, KCACHE,

EVENTS, etc.
15: ... . CPU processing steps after ABEA eg: HMM
16: end for
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Algorithm S10 heuristic memory allocation scheme
1: allocate_gpu_arrays(X,Y) . pre-allocate GPU arrays REF,

KCACHE, EVENTS, etc.
2: for batch of n reads do
3: ... . CPU processing steps before the ABEA eg: event

detection
4: rs, es← 0, 0 . cumulative sum of read lengths and no of

events
5: for each read i do
6: if (rs+ r[i] ≤ X and es+ e[i] ≤ Y ) then . check if

GPU arrays have adequate free space
7: p[i], q[i]← rs, es . save current read and event

offsets
8: rs← rs+ r[i]; es← es+ e[i]
9: assign_to_gpu(i) . GPU arrays have space, thus

assign read to the GPU
10: else
11: assign_to_cpu(i) . a GPU arrays is already full,

thus assign the read to the CPU
12: end if
13: end for
14: serialise_ram_arays(p, q, ...) . flatten multi

dimensional arrays in RAM to 1D arrays
15: memcpy_ram_to_gpu(...) . copy inputs of the ABEA

to the GPU memory
16: gpu_alignment(p, q...) . Perform ABEA on the GPU
17: process_rest_on_cpu() . execute on the CPU in parallel

to the GPU kernels
18: memcpy_gpu_to_ram(...) . copy alignment result back

to the RAM
19: deserialise(p, q, ....) . convert 1D result array to multi

dimensional array
20: ... . CPU processing steps after ABEA eg: HMM
21: end for
22: free_gpu_arrays() . free GPU arrays REF, KCACHE,

EVENTS, etc.
Note: Changes to Algorithm S9 are highlighted in blue
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S3 Extended Results
Experimental setup is given in Section S3.1. In Section
S3.2, we present experimental evidence that justifies
the selection of steps presented in Section S2.

S3.1 Experimental setup
We re-engineered the Nanopolish methylation calling
tool (existing methylation detection tool discussed in
Section S1) to: one, load a batch of n reads from disk
to RAM at a time, instead of on-demand loading; two,
synchronise CPU threads prior to GPU kernel invo-
cation (Nanopolish assigns a thread dynamically to a
particular thread, thus each read follows its own code
path); and three, optimise the CPU implementation
which otherwise would result in an apparent un-fair
speedup (when the optimised GPU version is com-
pared to an un-optimised CPU version).
We used publicly available NA12878 (human genome)

Nanopore WGS Consortium sequencing data [11] for
the experiments. The datasets used for the experi-
ments, their statistics (number of reads, total bases,
mean read length and maximum read length) and their
source are listed in Table S5.
Dsmall dataset was used for experiments under Sec-

tions S3.2.2, S3.2.1 and Drapid for Section S3.2.3.
To obtain the results for Section S3.2.3, first, we

grouped the reads in dataset Drapid based on their
read lengths. We grouped the read into 10 Kbases
bins (i.e., 0K-10K,10K-20K...90K-100K). Reads with
>100 Kbases were grouped into larger bins (100K bin
sizes; 100K-200K, 200K-300K and 200K-300K) as the
read count is very little in the range that certain 10K
bins would contain no reads at all. Then, we ran f5c
with only CPU and f5c with GPU acceleration on each
group of the reads separately. Then, we computed the
speedup of ABEA for each group of reads: the ker-
nel only speedup (GPU kernel time / time on CPU );
and, the speedup with overheads (overheads such as
memory copy, data structure serialisation). This ex-
periment was performed on the system lapH.
For Sections S3.2 time measurements were obtained

by inserting gettimeofday function invocations directly
into the C source code.

S3.2 Effect of individual optimisations
S3.2.1 Compute optimisations
Fig. S8c shows the time consumed by the three GPU
kernels after applying the compute optimisation tech-
niques discussed in Section S2.1. Time taken by each
of the three GPU kernels (pre-kernel, core-kernel and
post-kernel) is plotted for each different GPU. It is
observed that the core-kernel, which computes the
dynamic programming table (compute-intensive por-
tion), still consumes the majority of the GPU compute

time. The pre-kernel which performs data structure
initialisation consumes much lesser time and shows
that there is no need to further parallelise the loop in
Algorithm S5 (explained in Section S2.1). Despite the
lack of fine-grained parallelism in post-kernel (which
performs backtracking), the elapsed time is still con-
siderably lesser than the core-kernel. Thus, any future
optimisations should still mainly focus on the core-
kernel, followed by the post-kernel.
The efficacy of our compute optimisations on the

compute intensive core-kernel can be elaborated us-
ing the reported statistics from the NVIDIA profiler
(instruction level profiling—PC sampling in NVIDIA
visual profiler [20]). The profiler reports the percentage
distribution of reasons that caused the thread warps
to stall, based on the number of clock cycles. The per-
centage of the number of clock cycles that a warp was
stalled due to a memory dependency (waiting for a pre-
vious memory accesses to complete), improved from
59.10% to 44.81% after the use of GPU shared mem-
ory. After exploiting the kcache for improving mem-
ory coalescing, this percentage further improved to
28.62%.

S3.2.2 Memory optimisations
As stated in Section S2.2.1, the data array serialisa-
tion technique eliminated all memory allocations in-
side GPU kernels (malloc); still, required memory al-
locations per each batch of reads (cudaMalloc). The
overheads due to these cudaMalloc calls are plotted in
Fig. S8d along with the time for kernel execution and
data transfer to/from the GPU (using cudaMemcpy).
Observe that on certain GPUs (Jetson TX2, GeForce
940M and Tesla K40), the overheads due to cudaMal-
loc operations are significant in comparison to the com-
pute kernels (even higher than the compute kernels in
Jetson TX2). Such significant overheads justify why
we proposed a heuristic based memory pre-allocation
technique (Section S2.2.2) which completely eliminates
this overhead.
Interestingly, Tesla K40 and Geforce 940M which

incurred high cudaMalloc overheads are of relatively
older GPU architectures in comparison to GeForce
1050 and Tesla V100, where the overheads were min-
imal. This is probably due to hardware supported
memory allocation in latest GPU architectures. How-
ever, the aforementioned observation seems to be
valid only for GeForce GPUs (targeted for gaming on
PC/laptops) and Tesla GPUs (targeted for high per-
formance computing). On Tegra GPUs (SoC targeted
for embedded devices) the overhead seems to be signif-
icant in spite of the latest architectures (Jetson TX2
is the same Pascal architecture as GeForce 1050). We
additionally tested on a Jetson AGX Xavier (the most
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Table S5: Information of the datasets
Dataset Number of

reads
Number of
bases (Gbases)

Mean read
length
(Kbases)

Max read
length
(Kbases)

Source / SRA ac-
cession

Dsmall 19275 0.15 7.7 196 [19]
Dligation 451020 3.62 8.0 1500 ERR2184733
Drapid 270189 2.73 10.0 386 ERR2184734

Table S6: Different systems used for experiments
System
Name

Info CPU CPU
cores /
threads

RAM
(GB)

GPU GPU
mem
(GB)

GPU
arch

SoC NVIDIA Jetson TX2
embedded module

ARMv8 Cortex-A57
+ NVIDIA Denver2

6 / 6 8 Tegra shared
with
RAM

Pascal
/ 6.2

lapL Acer F5-573G lap-
top

i7-7500U 2/4 8 Geforce
940M

4 Maxwell
/ 5.0

lapH Dell XPS 15 laptop i7-8750H 6/12 16 Geforce
1050 Ti

4 Pascal
/ 6.1

ws HP Z640 worksta-
tion

Xeon E5-1630 4/8 32 Tesla
K40

12 Kepler
/ 3.5

HPC Dell PowerEdge
C4140

Xeon Silver 4114 20/40 376 Tesla
V100

16 Volta /
7.0

recent Tegra GPU based SoC — Volta architecture)
and cudaMalloc was yet expensive (40s on GPU ker-
nels and 44s on cudaMalloc, not shown in figure). Thus,
our memory pre-allocation strategy (in Section S2.2.2)
which totally eliminates this cudaMalloc overhead is
specifically beneficial for GPU on SoCs.

S3.2.3 Heterogeneous processing
We stated in Section S2.3 that very long reads if pro-
cessed on the GPU, limits the GPU occupancy. Fig.
S8e provides experimental evidence and shows the
need to process very long reads on CPU (explained
in Section S2.3). Fig. S8e plots the variation of the
speedup (GPU compared to CPU for ABEA) as the
read length varies. The x-axis labels the range of the
read length for which the speedup was computed (ex-
plained in the experimental setup). For instance, 0-10
on the x-axis refers to the group of reads with read
length 0-10Kbases. Note that in Fig. S8e the bins are
100K wide from 100K-200K on-wards, due to less num-
ber of reads of those lengths (explained in the exper-
imental setup). The speedup of computations (GPU
kernel time / CPU time) and the speedup includ-
ing overheads (GPU kernel time + overheads such as
memory copy, data structure serialisation) are plotted
in Fig. S8e. Speedup of more than 4X was observed for
smaller read lengths (0-10K). speedup drops with in-
creasing read-length and is less than 3X from 50K-60K.
The longer the reads are, the lesser number of reads
can be processed in the GPU in parallel (reduced oc-
cupancy), thus the reduced speedup. Hence, very long
reads that significantly affects the performance should

be performed on the CPU while the GPU is processing
the rest.
Fig. S8f shows the need for processing ultra long

reads separately (explained in Section S2.3). The x-
axis in the figure is the read-length (similar to Fig.
S8e). The blue bars (with reference to the right y-axis)
denote the average time consumed by the GPU to pro-
cess a batch of reads (1.5 Mbases), for each group of
read lengths from 0 bases to 50Kbases. The orange
bars (with reference to the right y-axis) denote the
average time consumed by the CPU (1 thread) to pro-
cess a single read in the particular group of reads. The
read length distribution (left y-axis) is shown shaded
in green colour to depict the abundance of reads in
each read length. Observe that CPU takes >1.6s for a
single read of 300K-400K length while the GPU com-
pletes a whole 40K-50K batch in <0.4s. Thus, the GPU
would idle for >1.2s until the CPU completes process-
ing. Hence, such ultra long reads (eg : >100 Kbases)
must be skipped and processed separately at the end.
Note that such ultra long reads are very few (green
coloured read length distribution in Fig. S8f).

S4 Miscellaneous
S4.1 Why Nanopolish had to be re-engineered?
There are three reasons why Nanopolish had to be
completely re-engineered into f5c for a successful GPU
implementation.
• Nanopolish performs on-demand loading of signal

data from file (a CPU thread assigned to the par-
ticular read invokes a file access just prior to signal
alignment). However, transferring read by read to
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Figure S9: Effect of individual optimisations

the GPU will incur a massive penalty and thus
a batch of reads have to be transferred at once.
Thus, we had to re-write the Nanopolish process-
ing framework in such a way that loading and
processing of a batch are performed batch wise.
In f5c, we read a batch of data to the RAM and
then bulk transfer to GPU memory, a batch of n
reads at a time.
• Nanopolish thread model un-suitable for GPU

acceleration—a thread is dynamically assigned to
a read using openMP, thus each read has its own
code path. However, offloading a batch of reads to
the GPU for signal alignment requires code paths
of all the reads in the batch to have converged
before the GPU kernel is invoked. In addition, ac-
curately measuring time, benchmarking and pro-

filing of individual algorithmic components is hin-
dered by such divergent code paths. pthread based
approach that interleaves input reading, process-
ing and output.

• Nanopolish is not optimised for efficient resource
utilisation (eg: marginal performance improve-
ment beyond 16 threads on servers and heavy-
weight for embedded systems due to spuriousmal-
loc calls). A comparison of such a version with the
GPU would result in an apparent high speedup,
which is unfair.

S4.2 Additional advantages of f5c over Nanopolish
In addition to the GPU acceleration of ABEA, f5c has
many additional advantages over original Nanopolish.
• I/O and processing are interleaved in f5c: the I/O

latency is considerably minimised.
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• Our CPU version alone is around 1.5X-2X faster
than the Nanopolish call methylation implemen-
tation and is very lightweight - suitable for embed-
ded systems due to the careful use of data struc-
tures and algorithms.
• f5c is capable of detecting load balance problems

between CPU and GPU, and report user with sug-
gestion for appropriate parameters.
• f5c works with package manager’s system wide in-

stallations of HDF5 (no need of thread-safe build
of HDF5), hence no need locally compile HDF5.
• Dependency hell has been minimised for both

CPU and GPU versions. Compatible with g++
4.8 or higher, and CUDA toolkit 6.5 or higher.
• f5c has suggestive error message for troubleshoot-

ing, especially the issues with respect to GPU.
• Pthread based thread framework written in C that

interleaves I/O with processing is very lightweight
and can be a starting point for future Nanopore
tools.
• f5c allows benchmarking section by section to

identify the bottlenecks in performance.
• f5c framework is suitable for the acceleration

of core kernels through other methods such as
FPGA.
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